K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LT
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
6 tháng 11 2019
*\(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}=\frac{a}{b}.\left(\frac{a}{b}\right)=\frac{ac}{bd}\)(đpcm)
* \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\left(\frac{a+c}{b+d}\right)^2\)(1)
Ta lại có \(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(2)
Từ (1),(2) => đpcm
TN
Cho a/b=c/d.Chứng minh
a, 5a+3b/5c+3d=5a-3b/5c-3b
b,(a-b)^2/(c-d)^2=ab/cd
c,a^3-b^3/c^3-d^3=(a+b/c+d)^3
2
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow a=bk;c=dk\)
Thay a = bk, c = dk vào \(\frac{a^2-b^2}{c^2-d^2}\) và \(\frac{ab}{cd}\), ta có:
\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\left(đpcm\right)\)