K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

Ta có: \(a+b+c+d=a^2+b^2+c^2+d^2\)

\(\Rightarrow\orbr{\begin{cases}a=b=c=d=1\\a=b=c=d=0\end{cases}}\) 

mà \(a^2+b^2+c^2+d^2=4\Rightarrow a=b=c=d=1\) 

\(\Rightarrow ab+bc+cd+ad=1+1+1+1=4\) 

Vậy.....

12 tháng 3 2016

1) coi lại đề

2) a) tam giác ABD và tam giác ABC có

góc A=góc A, góc ABD=góc ACB

=> tam giác ABD đồng dạng tam giác ACB (g-g)

b) ta có tam giác ABD đồng dạng tam giác ACB=> AB/AC=AD/AB=> 6/9=AD/6=> AD=(6.6):9=4

30 tháng 11 2016

BÀi này dễ tí mik giải cho

 

6 tháng 7 2016

Đề bài là j

k cho rồi giúp

7 tháng 7 2016

bạn à!

đề bài là giải phương trình trên nhá lúc đánh mình quên mất

7 tháng 5 2017

a) \(a^2+b^2+c^2+d^2=ab+bc+ac+cd.\)

<=>\(2a^2+2b^2+2c^2+2d^2=2ab+2ac+2bc+2cd\)

<=>\(2a^2+2b^2+2c^2+2d^2-2ab-2bc-2ac-2cd=0\)

<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)+\left(d^2-2cd+c^2\right)\)=0

<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(d-c\right)^2=0\)

=>a=b=c=d

=> ABCD là hình thoi