Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}\)
Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(đpcm)
b)\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+2=\frac{c}{d}+2\Leftrightarrow\frac{a+2b}{b}=\frac{c+2d}{d}\)(đpcm)
\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}=\frac{a+b-\left(a-2b\right)}{c+d-\left(c-2d\right)}=\frac{3b}{3d}=\frac{b}{d}\)
\(\frac{a+b}{c+d}=\frac{b}{d}=\frac{a+b-b}{c+d-d}=\frac{a}{c}\)
Suy ra \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\).
Ta co :
a/b = b/c = c/d = d/a = (a+b+c+d)/(b+c+d+a) = 1
=> a = b = c = d
A = (2a-b)/(c+d) + (2b-c)/(d+a) + (2c-d)/(a+b) + (2d-a)/(b+c)
= a/2a + a/2a + a/2a + a/2a = 1/2 + 1/2 + 1/2 + 1/2
= 2
Vậy.......................
nho**** nhe thanks