K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

mk nhìn cái phân số của bn là hoa mắt chóng mặt

bn ghi lại đi chứ nhìn zầy ít ai hỉu lém. bn vào ô "fx" trong ô gửi câu hỏi

duyệt đi

20 tháng 3 2016

chững minh đc dãy này lớn hơn 1 và nhỏ hơn 2 thì suy ra dãy này la phân số tối giản

NM
18 tháng 3 2022

ta có bất đẳng thức sau : 

\(\frac{a+b}{a+b+c+d}< \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)

tương tự ta sẽ có 

\(\frac{2\left(a+b+c+d\right)}{\left(a+b+c+d\right)}< A< \frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}\) hay 2<A<3 nên A không phải là số nguyên

16 tháng 2 2022

không ai trả lời

18 tháng 3 2019

Ta có \(\frac{a}{a+b+c}\)\(\frac{a}{a+b+c+d}\)

       \(\frac{b}{b+c+a}\)\(\frac{b}{b+c+a+d}\)

        tương tự ....

suy ra cái đề > 1 dpcm

10 tháng 5 2020

ko biet thi dung lam nhe con

15 tháng 1 2019

Mình đang cần gấp nên các bạn giúp mình với

10 tháng 7 2015

+ Vì a+ b + c > a + b => \(\frac{a}{a+b+c}<\frac{a}{a+b}\)

Tương tự, \(\frac{b}{a+b+c}<\frac{b}{b+c}\)\(\frac{c}{a+b+c}<\frac{c}{c+a}\)

=> \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

=> \(\frac{a+b+c}{a+b+c}=1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) (*)

+ ta có: Nếu phân số \(\frac{x}{y}<1\) thì \(\frac{x}{y}<\frac{x+m}{y+m}\)

Áp dụng với \(\frac{a}{a+b}<1;\frac{b}{b+c}<1;\frac{c}{c+a}<1\) ta có:

\(\frac{a}{a+b}<\frac{a+c}{a+b+c};\frac{b}{b+c}<\frac{b+a}{b+c+a};\frac{c}{c+a}<\frac{c+b}{c+a+b}\). cộng từng vế ta được

=>  \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{b+c+a} +\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(**)

Từ (*)(**) =>  \(1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\)

Vậy \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không là số nguyên

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không phải là số nguyên

=>đpcm