\(\dfrac{a}{b+c+d}\)=\(\dfrac{b}{a+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\\ \Rightarrow\dfrac{b+c+d}{a}=\dfrac{a+c+d}{b}=\dfrac{a+b+d}{c}=\dfrac{a+b+c}{d}=\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3\\ \Rightarrow\left\{{}\begin{matrix}b+d+c=3a\\a+c+d=3b\\a+b+d=3c\\a+b+c=3d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c+d=4a\\a+b+c+d=4b\\a+b+c+d=4c\\a+b+c+d=4d\end{matrix}\right.\\ \Rightarrow4a=4b=4c=4d\Rightarrow a=b=c=d\\ \Rightarrow P=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=1+1+1+1=4\)

24 tháng 8 2017

M=4 nha
Tick mình nhé!ok

22 tháng 9 2017

tks bn

3 tháng 11 2018

\(a,\)

Xét \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

\(ad=bc\left(gt\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

\(b,\)

\(\dfrac{a}{b}=\dfrac{c}{d}\) (Chứng minh câu a)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a+c}{b+d}=\dfrac{a}{b}\)

\(c,\)

Xét \(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow ad=bc\)

\(ad=bc\left(gt\right)\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(d,\)

\(\dfrac{a}{c}=\dfrac{b}{d}\) (Chứng minh câu c)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

\(e,\)

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2a+b}{2c+d}\)

\(\Rightarrow\dfrac{2a+b}{2c+d}=\dfrac{a}{c}\)

3 tháng 12 2017

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d} \)

5 tháng 12 2017

còn mấy con kia nữa bn.... Giúp cái...haha

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)

\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)

Do đó: \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

b: \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

nên \(\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\)

c: \(\dfrac{a}{a+c}=\dfrac{bk}{bk+dk}=\dfrac{b}{b+d}\)

13 tháng 9 2017

nhanh lên các bạn ơi ai làm đúng mk tickhahaokleuleu

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)

Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

b: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

DO đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

30 tháng 9 2017

Các bạn chỉ cần giúp mk câu b, c, e, f,

15 tháng 12 2017

bạn cứ đặt công thức gốc là k sau đó thay vào các câu là được thui

10 tháng 3 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d-a-2b-c-d}{a-b}=1\)

\(\Rightarrow\left\{\begin{matrix}-a=b+c+d\\-b=a+c+d\\-c=b+c+d\\-d=a+b+c\end{matrix}\right.\)\(\Rightarrow a=b=c=d\)

\(M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{a+d}{b+c}\)

\(\Rightarrow M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}\)

\(\Rightarrow M=1+1+1+1\)

\(\Rightarrow M=4\)

Vậy \(M=4\)

24 tháng 4 2017

thiếu 1 th nhá bạn

4 tháng 11 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a/ \(VT=\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1=\left(1\right)\)

\(VP=\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b/ \(VT=\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)

\(VP=\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

c/ \(VT=\dfrac{2a-5b}{2c-5d}=\dfrac{2bk-5b}{2dk-5d}=\dfrac{b\left(2k-5\right)}{d\left(2k-5\right)}=\dfrac{b}{d}\left(1\right)\)

\(VP=\dfrac{3a+4b}{3c+4d}=\dfrac{3bk+4b}{3dk+4d}=\dfrac{b\left(3k+4\right)}{d\left(3k+4\right)}=\dfrac{b}{d}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{2a-5b}{2c-5đ}=\dfrac{3a+4b}{3c+4d}\)

d/ \(VT=\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{\left(bk\right)^2-\left(dk\right)^2}{b^2-k^2}=\dfrac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\left(1\right)\)

\(VP=\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\)

4 tháng 11 2018

Hình như phải là cho \(\dfrac{a}{b}=\dfrac{c}{d}\) chứ

24 tháng 9 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ⇒ a=bk, c=dk

a) Ta có: ✽ \(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)

nên \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b) \(\dfrac{a-c}{c}=\dfrac{bk-dk}{dk}=\dfrac{k\left(b-d\right)}{dk}=\dfrac{b-d}{d}\)

Vậy \(\dfrac{a-c}{c}=\dfrac{b-d}{d}\)