K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 1 2020

Lời giải:

Ta thấy, với mọi $a,b,c,d>0$ ta có:

$\frac{a}{a+b+c}>\frac{a}{a+b+c+d}$

$\frac{b}{b+c+d}>\frac{b}{b+c+d+a}$

$\frac{c}{c+d+a}>\frac{c}{c+d+a+b}$

$\frac{d}{d+a+b}>\frac{d}{d+a+b+c}$

Cộng theo vế:

$\Rightarrow A>\frac{a+b+c+d}{a+b+c+d}$ hay $A>1(1)$

-----------------------

Mặt khác:

Xét hiệu:

$\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{-d(b+c)}{(a+b+c)(a+b+c+d)}< 0$

$\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}$

Tương tự:

$\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}$

$\frac{c}{c+d+a}< \frac{c+b}{c+d+a+b}$

$\frac{d}{d+a+b}< \frac{d+c}{d+a+b+c}$

Cộng theo vế:

$A< \frac{2(a+b+c+d)}{a+b+c+d}$ hay $A< 2(2)$

Từ $(1);(2)\Rightarrow 1< A< 2$

$\Rightarrow$ \(\left \lfloor A\right \rfloor=1\)

24 tháng 9 2016

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\)\(\frac{d}{a+b+c}\)

\(\Rightarrow1+\frac{a}{b+c+d}=1+\frac{b}{a+c+d}=1+\frac{c}{a+b+d}=1+\frac{d}{a+b+c}\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Mà: \(a+b+c+d\ne0\Rightarrow b+c+d=a+c+d=a+b+d=a+b+c\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)

\(\Rightarrow A=1+1+1+1=4\)

24 tháng 9 2016

số đo slaf

nhe sbn

bài dài 

lắm mình

vhir tiện ghi

thế này thôi

29 tháng 7 2018

a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Theo câu a ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2) => đpcm

31 tháng 8 2018

a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Theo câu a, ta có:

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)

Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)

Từ (1) và (2) => đpcm.

2 tháng 10 2018

do b,d>0 nhân 2 vế của a/b=c/d với bd

ta có a/b>c/d=> a+d>b+c

2 tháng 10 2018

Bạn trình bày rõ hơn được không?

28 tháng 7 2016

Ta có : \(\frac{a}{a+b+c}>\frac{a}{a+b+c}.\)

\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

\(=>\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)

\(>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)

\(=\frac{a+b+c+d}{a+b+c+d}=1\)

\(=>\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>1\)(1)

* Ta có : \(\frac{a}{a+b+c}< \frac{a}{a+c}\) 

\(\frac{b}{b+c+d}< \frac{b}{b+d}\)

\(\frac{c}{c+d+a}< \frac{c}{c+a}\) 

\(\frac{d}{d+a+b}< \frac{d}{d+b}\)

\(=>\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)

\(< \frac{a}{a+c}+\frac{b}{b+d}+\frac{c}{c+a}+\frac{d}{d+b}=\frac{a+c}{a+c}+\frac{b+d}{b+d}=2\)

\(=>\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)(2)

Từ (1) và (2) suy ra 

\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\left(\text{đ}pcm\right)\)

16 tháng 5 2018

làm sao để viết được phân số vậy bạn

21 tháng 6 2017

a) phải là a.d<b.c

 chứ ko phải a,d<b,c đâu

7 tháng 8 2018

đặt \(k=\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\Rightarrow\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)

\(\Rightarrow\frac{a+c}{b+d}=k\)

mà \(k=\frac{a}{b}\)

\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)(đpcm)

b) đặt \(k=\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\Rightarrow\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)

\(\Rightarrow\frac{a-c}{b-d}=k\)

mà \(k=\frac{a}{b}\)

\(\Rightarrow\frac{a-c}{b-d}=\frac{c}{d}\)(đpcm)

7 tháng 2 2018

Ta có \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)

\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)

Lại có \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)

\(\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\left(2\right)\)

Từ (1) và (2) => 1<M<2

=> M không là số tự nhiên