Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Ta có: \(a^3+b^3\ge\frac{1}{4}\left(a+b\right)^3\)
Thật vậy, BĐT tương đương:
\(a^3-a^2b+ab^2-b^3\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng với a;b dương)
Áp dụng: \(\frac{a^3}{\left(b+c\right)^3}+\frac{b^3}{\left(c+a\right)^3}+\frac{c^3}{\left(a+b\right)^3}\ge\frac{a^3}{4\left(b^3+c^3\right)}+\frac{b^3}{4\left(c^3+a^3\right)}+\frac{c^3}{4\left(a^3+b^3\right)}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng BĐT AM-GM ta có \(\frac{1^2}{a\left(a+b\right)}+\frac{1^2}{b\left(b+c\right)}+\frac{1^2}{c\left(c+a\right)}\ge\)
\(\ge\frac{\left(1+1+1\right)^2}{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}=\frac{9}{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}\ge\)
\(\ge\frac{9}{3.\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Ta có \(a+b+c\ge3\sqrt[3]{abc}=3\)
Áp dụng bđt cosi ta có:
\(\frac{a^3}{\left(b+1\right)\left(c+2\right)}+\frac{b+1}{12}+\frac{c+2}{18}\ge3\sqrt[3]{\frac{a^3}{12.18}}=\frac{a}{2}\)
Làm tương tự
=>\(VT+\left(\frac{a+1}{12}+\frac{a+2}{18}\right)+\left(\frac{b+1}{12}+\frac{b+2}{18}\right)+\left(\frac{c+1}{12}+\frac{c+2}{18}\right)\ge\frac{a+b+c}{2}\)
=> \(VT\ge\frac{13}{36}.\left(a+b+c\right)-\frac{7}{12}\ge\frac{13}{36}.3-\frac{7}{12}=\frac{1}{2}\)(ĐPCM)
Áp dụng BĐT Cosi:
\(\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}>=4\sqrt[4]{\frac{\left(a+2\right)\left(b+2\right)}{27.27.9}.\frac{a^4}{\left(a+2\right)\left(b+2\right)}}...\)
\(>=\frac{4}{9}a\)
Tương tự
\(=>VT>=\frac{4}{9}\left(a+b+c\right)-\frac{3}{9}-2\left(\frac{a+2}{9}+\frac{b+2}{9}+\frac{c+2}{9}\right)=\frac{1}{3}.\)
Dấu "="xảy ra khi a=b=c=1
Ta có:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3a}{4}\)
\(\Rightarrow\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{4a-b-c}{8}\left(1\right)\)
Tương tự ta có:
\(\hept{\begin{cases}\frac{b^3}{\left(b+a\right)\left(b+c\right)}\ge\frac{4b-a-c}{8}\left(2\right)\\\frac{c^3}{\left(c+a\right)\left(c+b\right)}\ge\frac{4c-a-b}{8}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế được
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+a\right)\left(c+b\right)}\ge\frac{a+b+c}{4}=\frac{3}{4}\)
Bạn tham khảo tại đây:
Câu hỏi của Trần Hữu Ngọc Minh - Toán lớp 9 - Học toán với OnlineMath
Áp dụng BĐT Cosi ta được:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt{\frac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right)64}}=\frac{3a}{4}̸\)
Tương tự \(\hept{\begin{cases}\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{1+a}{8}+\frac{1+c}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)
Cộng theo từng vế BĐT trên ta có:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{a+b+c}{2}\)
Vì \(a+b+c\ge3\sqrt[3]{abc}=3\)do đó:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c
Bạn cho VP=3/2 có phải tốt không, chứ cái đề nó lộ liễu quá.
\(\frac{a^3}{b\left(c+a\right)}+\frac{2b}{4}+\frac{c+a}{4}\ge3\sqrt[3]{\frac{a^3}{b\left(c+a\right)}.\frac{2b}{4}.\frac{c+a}{4}}=\frac{3a}{2}\)
\(\frac{b^3}{c\left(a+b\right)}+\frac{2c}{4}+\frac{a+b}{4}\ge3\sqrt[3]{\frac{b^3}{c\left(a+b\right)}.\frac{2c}{4}.\frac{a+b}{4}}=\frac{3b}{2}\)
\(\frac{c^3}{a\left(b+c\right)}+\frac{2a}{4}+\frac{b+c}{4}\ge3\sqrt[3]{\frac{c^3}{a\left(b+c\right)}.\frac{2a}{4}.\frac{b+c}{4}}=\frac{3c}{2}\)
\(\Rightarrow VT\ge\frac{3\left(a+b+c\right)}{2}-\frac{2\left(a+b+c\right)}{4}-\frac{2\left(a+b+c\right)}{4}\)\(=\frac{1}{2}\left(a+b+c\right)\Rightarrowđpcm\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)