Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S+3=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+3\)
\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(=2016\cdot\frac{1}{90}=\frac{112}{5}\)
\(\Rightarrow S=\frac{112}{5}-3=\frac{97}{5}\)
Ta có : \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2015.5\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}+\frac{a+c}{c+a}+\frac{b+c}{b+c}=2015.5\)
\(\Leftrightarrow Q+3=2015.5\Rightarrow Q=2015.5-3=10072\)
Bài 1 :
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\left(1\right)\)
\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)
Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)
Bài 2:
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)
\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)
\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)
\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)
Chúc bạn học tốt ( -_- )
Bài 1:
ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}< 1\)
\(\Rightarrow A< 1\)(1)
ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)
\(=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)
\(\Rightarrow B>1\)(2)
Từ (1);(2) => A<B
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)
\(=\frac{7}{b+c}-\frac{b+c}{b+c}+\frac{7}{c+a}-\frac{c+a}{c+a}+\frac{7}{a+b}-\frac{a+b}{a+b}\)
\(=\frac{7}{b+c}-1+\frac{7}{c+a}-1+\frac{7}{a+b}-1\)
\(=\frac{7}{b+c}+\frac{7}{c+a}+\frac{7}{a+b}-3\)
\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\) \(.Thay\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{7}{10}\)
\(\Rightarrow S=7.\frac{7}{10}-3=\frac{49}{10}-3=1\frac{9}{10}>1\frac{8}{11}\)
Vậy\(S>1\frac{8}{11}\)
Xét
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=7\cdot\frac{7}{10}=\frac{49}{10}\)
\(\Leftrightarrow\frac{a+b}{a+b}+\frac{c}{a+b}+\frac{a+c}{a+c}+\frac{b}{a+c}+\frac{b+c}{b+c}+\frac{a}{b+c}=\frac{49}{10}\)
\(3+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{49}{10}\Leftrightarrow S=\frac{19}{10}\)
Ta có: \(1\frac{8}{11}=\frac{19}{11}\)
vì 19=19 ,\(\frac{1}{11}< \frac{1}{10}\)nên \(\frac{19}{11}< \frac{19}{10}\)
Vậy \(S>1\frac{8}{11}\)
Bài 1 :
Ta có : \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Ta chứng minh BĐT \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)
Thật vậy : BĐT \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\) ( đúng )
Vậy \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)
Áp dụng vào bài toán ta có : \(S\ge2+2+2=6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Vậy min \(S=6\) tại \(a=b=c\)
\(\frac{2015}{a+b}+\frac{2015}{b+c}+\frac{2015}{c+a}=\frac{2015}{90}\)
\(\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{2015}{90}\)
\(1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=\frac{2015}{90}\)
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}=\frac{2015}{90}-3=\frac{349}{18}\)