\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)

   Tính...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)

\(\Rightarrow\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(a+b+c\right)=\left(a+b+c\right)\frac{1}{3}\)

\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{2010}{3}\)

\(\Rightarrow\left(1+\frac{c}{a+b}\right)+\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{c+a}\right)=\frac{2010}{3}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2010}{3}-1-1-1\)

\(\Rightarrow S=667\)

8 tháng 1 2018

a+b+c = 2010 => a+b=2010-c ; b+c=2010-a ; c+a=2010-b

=> S = a/2010-a + b/2010-b + c/2010-c = 2010/2010-a - 1 + 2010/2010-b -1 + 2010/2010-c - 1

= 2010/b+c - 1 + 2010/c+a - 1 + 2010/a+b - 1

= 2010.(1/b+c + 1/c+a + 1/a+b) - 3 

= 2010.1/3 - 3 = 667

Vậy S = 667

Tk mk nha

8 tháng 1 2018

Ta có: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2010\cdot\frac{1}{3}\)

\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{2010}{3}\)

\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=\frac{2010}{3}\)

\(\Rightarrow S+3=\frac{2010}{3}\)

\(\Rightarrow S=\frac{2010}{3}-3=\frac{2001}{3}=667\)

21 tháng 4 2015

\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2010.\frac{1}{3}\)

Mà \(\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\)\(\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\)

\(=1+\frac{c}{a+b}+\frac{a}{b+c}+1+\frac{b}{c+a}+1=3+S\)

=> \(S=\frac{2010}{3}-3=\frac{2001}{3}\)

Từ a+b+c=2010

\(\Rightarrow\)a= 2010-(b+c)

\(\Rightarrow\)b= 2010-(c+a) 

\(\Rightarrow\)c= 2010-(a+b)

Thay vào A, ta được:

A=\(\frac{2010-\left(b+c\right)}{b+c}\)\(\frac{2010-\left(c+a\right)}{c+a}\) + \(\frac{2010-\left(a+b\right)}{a+b}\)

A= \(\frac{2010}{b+c}\)\(\frac{2010}{c+a}\)+\(\frac{2010}{a+b}\)- 3

A= 2010( \(\frac{1}{b+c}\)+\(\frac{1}{c+a}\)+\(\frac{1}{a+b}\) ) -3

A= 2010. \(\frac{1}{10}\)-3

A=201-3

A= 198

Vậy A=198

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2010-\left(b+c\right)}{b+c}+\frac{2010-\left(c+a\right)}{c+a}+\frac{2010-\left(a+b\right)}{a+b}\)

\(=\frac{2010}{b+c}-\frac{b+c}{b+c}+\frac{2010}{a+b}-\frac{a+b}{a+b}+\frac{2010}{a+c}-\frac{a+c}{a+c}=\left(\frac{2010}{b+c}+\frac{2010}{a+b}+\frac{2010}{a+c}\right)-\left(1+1+1\right)\)

\(=2010.\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)-3=2010.\frac{1}{3}-3=670-3=667\)

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)

8 tháng 1 2018

Ta có: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2017\cdot\frac{1}{90}\)

\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{2017}{90}\)

\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=\frac{2017}{90}\)

\(\Rightarrow A+3=\frac{2017}{90}\)

\(\Rightarrow S=\frac{2017}{90}-3=\frac{1747}{90}\)

8 tháng 1 2018

từ giả thiết, ta có 

\(\frac{1}{2017-a}+\frac{1}{2017-b}+\frac{1}{2017-c}=\frac{1}{90}\)

Mà \(S=\frac{a}{2017-a}+\frac{b}{2017-b}+\frac{c}{2017-c}=-3+\frac{2017}{2017-a}+\frac{2017}{2017-b}+\frac{2017}{2017-c}\)

=-3+\(2017\left(\frac{1}{2017-a}+\frac{1}{2017-b}+\frac{1}{2017-c}\right)=-3+\frac{2017}{90}=\frac{1747}{90}\)

vậy ...

^_^

4 tháng 3 2017

Ta có :

\(S+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)

\(=\left(\frac{a}{b+c}+\frac{b+c}{b+c}\right)+\left(\frac{b}{a+c}+\frac{a+c}{a+c}\right)+\left(\frac{c}{a+b}+\frac{a+b}{a+b}\right)\)

\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)

\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(=2009.\frac{1}{7}=287\)

\(\Rightarrow S=287-3=284\)