K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

\(\frac{a^4c^3+b^4a^3+c^4b^3}{a^3b^3c^3}\)\(\frac{b^4c+c^4a+a^4b}{abc}\)

\(\Rightarrow\)\(a^4c^3+b^4a^3+c^4b^3\)\(b^4c+c^4a+a^4b\)

\(\Rightarrow\)\(a^4\left(c^3-b\right)+b^4\left(a^3-c\right)+c^4\left(b^3-a\right)\)= 0

suy ra c^3 -b = 0 hoặc a^3 -c = 0 hoặc b^3 -a = 0

suy ra   đpcm

21 tháng 11 2018

đặt \(\hept{\begin{cases}x=\frac{a}{b^3}\\y=\frac{b}{c^3}\\z=\frac{c}{a^3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{x}=\frac{b^3}{a}\\\frac{1}{y}=\frac{c^3}{b}\\\frac{1}{z}=\frac{a^3}{c}\end{cases}}\)khi đó  xyz=1

đề bài <=> x+y+z =1/x +1/y +1/z => x+y+z =yz+xz+xy

từ đó => xyz+  (x+y+z) -(xy+yz+xz)-1=0    <=> (x-1)(y-1)(z-1)=0

vây tồn tại x=1 =>a=b^3 (đpcm")

22 tháng 1 2017

Ta gọi 3 số lần lượt là a , b , c

Theo đề bài ta có :
\(\left\{\begin{matrix}\frac{a}{\frac{2}{5}}=\frac{b}{\frac{3}{4}}=\frac{c}{\frac{1}{6}}\\a^2+b^2+c^2=24309\end{matrix}\right.\)

Ta có \(\frac{a}{\frac{2}{5}}=\frac{b}{\frac{3}{4}}=\frac{c}{\frac{1}{6}}\)

\(\Leftrightarrow\frac{a^2}{\left(\frac{2}{5}\right)^2}=\frac{b^2}{\left(\frac{3}{4}\right)^2}=\frac{c^2}{\left(\frac{1}{6}\right)^2}\)

\(\Leftrightarrow\frac{a^2}{\frac{4}{25}}=\frac{b^2}{\frac{9}{16}}=\frac{c^2}{\frac{1}{36}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a^2}{\frac{4}{25}}=\frac{b^2}{\frac{9}{16}}=\frac{c^2}{\frac{1}{36}}=\frac{a^2+b^2+c^2}{\frac{2701}{3600}}=\frac{24309}{\frac{2701}{3600}}=32400\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\frac{2}{5}}=32400\\\frac{b}{\frac{3}{4}}=32400\\\frac{c}{\frac{1}{6}}=32400\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a=32400.\frac{2}{5}=12960\\b=32400.\frac{3}{4}=24300\\c=32400.\frac{1}{6}=5400\end{matrix}\right.\)

\(\Rightarrow A=12960+24300+5400=42660\)

Vậy số A = 42660

Ta có : a/c=c/b

=> c^2=a.b  (1)

Cm:a/b=a^2+c^2/b^2+c^2  (2)

Từ (1),(2) suy ra :

a^2+c^2/b^2+c^2=a^2+a.b/b^2+a.b=a(a+b)/b(b+a)=a/b

Vậy a/b = a^2+c^2/b^2+c^2 (đpcm)

8 tháng 8 2019

*Từ abc=1 => a;b;c khác 0

Khi đó : \(\frac{1}{ab+a+1}\) = \(\frac{1}{ab+a+1}\) .\(\frac{bc}{bc}\) = \(\frac{bc}{ab.bc+abc+bc}\) = \(\frac{bc}{abc.b+abc+bc}\) = \(\frac{bc}{bc+b+1}\)

(do abc=1)

*Do abc = 1 => \(\frac{1}{abc+bc+b}\) = \(\frac{1}{bc+b+1}\)

Khi đó : \(\frac{1}{ab+a+1}\) + \(\frac{b}{bc+b+1}\) + \(\frac{1}{abc+bc+b}\)

= \(\frac{bc}{bc+b+1}\) + \(\frac{b}{bc+b+1}\) +\(\frac{1}{bc+b+1}\)

= \(\frac{bc+b+1}{bc+b+1}\) = 1

Hay \(\frac{1}{ab+a+1}\) + \(\frac{b}{bc+b+1}\) + \(\frac{1}{abc+bc+b}\) = 1 (đpcm).

*Chú ý : Đây là phương pháp thế số bởi chữ !

10 tháng 7 2016

Ta có : \(M=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=8.\frac{3}{4}=6\)

Vậy M = 6

10 tháng 7 2016

Thanks

 

5 tháng 11 2015

Vào đây nhé: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

29 tháng 11 2019

Bài 1:

Hỏi đáp Toán

Chúc bạn học tốt!

29 tháng 11 2019

Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!