\(a^4+b^4+c^4\)=2\(\left(ab+ac+bc\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2023

Ta có: \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

Mặt khác: \(a^2\ge0\forall a;b^2\ge0\forall b;c^2\ge0\forall c\)

\(\Rightarrow a^2+b^2+c^2\ge0\) 

Suy ra: \(2ab+2bc+2ac=0\)

\(\Rightarrow2\left(ab+bc+ac\right)=0\)

\(\Rightarrow ab+bc+ac=0\Leftrightarrow2\left(ab+bc+ac\right)^2=0\) (1)

Lại có: \(a^4+b^4+c^4\)

\(=\left(a^2+b^2+c^2\right)^2-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\right]\)

\(=0-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2+2\left(ab+bc+ac\right)-2\left(ab+bc+ac\right)\right]\)

\(=-2\left(ab+bc+ac\right)^2-4\left(ab+bc+ac\right)\)

\(=0\) (2)

Từ (1) và (2) \(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ac\right)^2=0\)

hay \(a^4+b^4+c^4=2\left(ab+ac+bc\right)^2\)

Kiểm tra hộ mình xem có đúng không ạ!

19 tháng 7 2016

\(Ta\)\(có\):\(\)

\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\)
\(=\left(a^2+b^2+c^2\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)\(Mà\)\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0=a^2+b^2+c^2+2\left(ab+ac+bc\right)\)\(=1+2\left(ab+ac+bc\right)=0\Rightarrow2\left(ab+ac+bc\right)=-1\)\(\Rightarrow a^2+b^2+c^2=2\left(ab+bc+ac\right)\)

19 tháng 7 2016

Xl nha dòng cuối mik ghi nhầm

Phài là \(a^4+b^4+c^4=2\left(ab+bc+ac\right)\)

1 tháng 10 2017

tự làm đi , đồ ăn sẵn

1 tháng 10 2017

a)\(VP=\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\)

\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\)=a2b2+b2c2+c2a2+2abc.0=a2b2+b2c2+c2a2=VP

Vậy ta có đpcm

3 tháng 7 2018

Bài 1 bạn viết rõ yêu cầu của đề ra nhé , mình làm bài 2.

\(a.\left(a-b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow2a^2+2b^2-a^2+2ab-b^2=0\)

\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a+b=0\)

\(\Leftrightarrow a=-b\left(đpcm\right)\)

\(b.a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)\(\Leftrightarrow a=b=c\left(đpcm\right)\)

\(c.\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2=3ab+3bc+3ac-2ab-2bc-2ac\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow a=b=c\) ( Kết quả câu b)

14 tháng 3 2018

\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2\left(ab^2c+abc^2+a^2bc\right)=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow2\left(ab^2c+abc^2+a^2bc\right)=0\\ \Leftrightarrow abc\left(a+b+c\right)=0\left(đpcm;a+b+c=0\right)\)

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Sửa lại đề: \(a+b+c=0\)

a) Ta có:

\(A=a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)\)

\(=[(a+b+c)^2-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)\)

\(=4(ab+bc+ac)^2-2(a^2b^2+b^2c^2+c^2a^2)\)

\(=4(ab+bc+ac)^2-2(a^2b^2+b^2c^2+c^2a^2)-4abc(a+b+c)\)

(do \(a+b+c=0\))

\(A=4(ab+bc+ac)^2-2[a^2b^2+b^2c^2+c^2a^2+2abc(a+b+c)]\)

\(=4(ab+bc+ac)^2-2(ab+bc+ac)^=2(ab+bc+ac)^2\)

Ta có đpcm

b) Ta có:

\(\frac{(a^2+b^2+c^2)^2}{2}=\frac{[(a+b+c)^2-2(ab+bc+ac)]^2}{2}=\frac{[-2(ab+bc+ac)]^2}{2}=2(ab+bc+ac)^2\)

Kết hợp với kết quả phần a ta có đpcm.

26 tháng 9 2017

Bạn ơi cái chỗ

= 4(ab+bc+ca)^2 - 2(ab+bc+ca)= 2(ab+bc+ca)^2

thì phải là như thế này chứ

= 4(ab+bc+ca)^2 - 2(ab+bc+ca)^2= 2(ab+bc+ca)^2

Đây là ý mình còn nếu ko phải mong bạn bỏ qua và giải thích cho mình nhé!!

4 tháng 12 2016

Câu a/ Thì chứng minh ở dưới rồi nhé e

b/ Ta cần chứng minh

\(2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\)

\(\Leftrightarrow2abc\left(a+b+c\right)=0\)(đúng)

=> ĐPCM

4 tháng 12 2016

c/ Ta có

\(\frac{\left(a^2+b^2+c^2\right)^2}{2}=\frac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}=a^4+b^4+c^4\)

Cái này là áp dụng câu a vô nhé e

6 tháng 8 2016

a) a2 + b2 + c2 = ab + ac + bc

=> 2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc

=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0

=> (a - b)2 + (a - c)2 + (b - c)2 = 0 

Do 3 hạng tử trên đều có giá trị lớn hơn hoặc bằng 0 nên a - b = a - c = b - c = 0

=> a = b = c 

6 tháng 8 2016

b) a3 + b3 + c3 = 3abc

=> a3 + b3 + c3 - 3abc = 0

=> a3 + 3a2b + 3ab+ b3 + c3 - 3abc - 3a2b - 3ab2 = 0

=> (a + b)3 + c3 - 3ab(a + b + c) = 0

=> (a + b + c)(a2 + 2ab + b2 - bc - ac + c2) - 3ab(a + b + c) = 0

=> (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 0 

=> a + b + c = 0

hoặc a2 + b2 + c2 = ab + bc + ac =>  a = b = c

29 tháng 11 2016

1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

=>ĐPcm

3)(a+b+c)2\(\ge\)3(ab+bc+ca)

=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca

=>a2+b2+c2-ab-bc-ca\(\ge\)0

=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0

=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0

=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0

4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)