K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

Ta có : \(\frac{a}{a+bc}=\frac{a}{a\left(a+b+c\right)+bc}=\frac{a}{a^2+ab+ac+bc}=\frac{a}{\left(a+b\right)\left(a+c\right)}\)

\(\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\) (AM-GM)

Tương tự cộng vào sẽ ra

27 tháng 4 2019

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{ab}{2\sqrt{ab}}+\frac{bc}{2\sqrt{bc}}+\frac{ca}{2\sqrt{ca}}\) (bất đẳng thức cô-si)

                                                     \(=\frac{\sqrt{ab}}{2}+\frac{\sqrt{bc}}{2}+\frac{\sqrt{ca}}{2}\)

                                                       \(=\frac{1}{4}\left(2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\right)\)

                                                        \(\le\frac{1}{4}\left(a+b+b+c+c+a\right)\)(bất đẳng thức cô si)

                                                           \(=\frac{1}{2}\left(a+b+c\right)\)

Dấu '=' xảy ra khi a=b=c

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*

17 tháng 11 2017

chịu??? tớ chưa học đến?

10 tháng 4 2019

Ê,

Why?

bạn ý cũng đưa câu hỏi lên thui mà 

6 tháng 7 2016

Trả lời hộ mình đi

28 tháng 8 2017

lay 3-VT la xong ban ak,day la phuongphap dao dau ma

16 tháng 3 2016

Ta có:

Từ \(\left(a+b\right)^2\ge4ab\)   (bất đẳng thức Cô-si cho hai số thực dương  \(a,b\))

nên nhân \(\frac{1}{4\left(a+b\right)}\) vào cả hai vế của bđt trên, ta được:

 \(\frac{a+b}{4}\ge\frac{ab}{a+b}\)  \(\left(1\right)\)

Tương tự, ta cũng có  \(\frac{b+c}{4}\ge\frac{bc}{b+c}\)  \(\left(2\right)\)  và  \(\frac{c+a}{4}\ge\frac{ca}{c+a}\)  \(\left(3\right)\)

Cộng từng vế của bđt \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\), ta được:

\(\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}\ge\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\)

\(\Leftrightarrow\)  \(\frac{2\left(a+b+c\right)}{4}\ge\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\)

\(\Leftrightarrow\)  \(\frac{a+b+c}{2}\ge\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\), tức \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b+c}{2}\)  \(\left(đpcm\right)\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(a=b=c\)