K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

Câu 1

\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)

Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)

Câu 2:

\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)

Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24

19 tháng 4 2016

............................

.........................???????/

AH
Akai Haruma
Giáo viên
11 tháng 2 2017

Bài 1)

Dạng tổng quát của BĐT Holder khá rắc rối. Người ta thường chú ý đến dạng phổ biến nhất là BĐT Holer bậc 3.

\((a^3+b^3+c^3)(m^3+n^3+p^3)(x^3+y^3+z^3)\geq (amx+bny+cpz)^3\)

Cách CM (AM-GM):

\(\frac{a^3}{a^3+b^3+c^3}+\frac{m^3}{m^3+n^3+p^3}+\frac{x^3}{x^3+y^3+z^3}\geq \frac{3axm}{\sqrt[3]{(a^3+b^3+c^3)(x^3+y^3+z^3)(m^3+n^3+p^3)}}\)

Tương tự với với các bộ còn lại và cộng lại thu được đpcm

Áp dụng BĐT Holder bậc ba:

\((a^3+b^3+16c^3)(1+1+\frac{1}{4})(1+1+\frac{1}{4})\geq (a+b+c)^3\)

\(\Leftrightarrow (a^3+b^3+16c^3).\frac{81}{16}\geq (a+b+c)^3\)

\(\Rightarrow P\geq \frac{16}{81}\)

Vậy \(P_{\min}=\frac{16}{81}\Leftrightarrow a=b=4c\)

2 tháng 2 2017

Help