K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=0\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)=0\)

\(\Leftrightarrow2.\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)=-\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)

Mà \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}>0\)

\(\Rightarrow2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)< 0\)

\(\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}< 0\left(đpcm\right)\)

(Dấu"=" không xảy ra bạn nhé)

 

14 tháng 11 2021

Thanks bạn

10 tháng 8 2021
Một còn vịt
15 tháng 9 2019

Ta có: \(0\le a\le b\le1\Rightarrow\hept{\begin{cases}a-1\ge0\\b-1\ge0\end{cases}}\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab-a-b+1\ge0\)

\(\Leftrightarrow ab+1\ge a+b\Leftrightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\)(Vì \(c\ge0\))

Mà \(\frac{c}{a+b}\le\frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\)(Vì \(c\ge0\))

\(\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)

Chứng minh tương tự: \(\frac{b}{bc+1}\le\frac{2b}{a+b+c};\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{bc+1}+\frac{b}{bc+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\left(đpcm\right)\)

28 tháng 2 2017

Chứng minh gì vậy ????

24 tháng 12 2019

Bạn tham khảo ở đây nhé

https://olm.vn/hoi-dap/detail/49527613309.html

24 tháng 12 2019

ở đây nữa:

https://hoc24.vn/hoi-dap/question/32718.html

25 tháng 8 2020

Bài làm:

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

=> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=0\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=0\) (1)

Mà \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\), cách CM như sau:

\(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự: \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\) ; \(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)

Cộng vế 3 BĐT trên lại ta sẽ được: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

Thay vào (1) ta được:

\(0=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le0\)

Dấu "=" xảy ra khi: \(a=b=c\)

10 tháng 6 2016

Cho a,b,c là ba số dương thoả mãn \(0\le a\le b\le c\le1\)

Chứng minh rằng \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)

Giải : 

Từ giả thiết ta có : \(\left(1-b\right)\left(1-c\right)\ge0\Leftrightarrow1-\left(b+c\right)+bc\ge0\Rightarrow bc+1\ge b+c\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\le\frac{a}{a+b}\left(1\right)\)

Tương tự ta cũng có : \(\frac{b}{ac+1}\le\frac{b}{a+c}\le\frac{b}{a+b}\left(2\right)\) ; \(\frac{c}{ab+1}\le c\le1\left(3\right)\)

Cộng (1) , (2) , (3) theo vế ta được : \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a+b}{a+b}+1=2\)

Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)

20 tháng 6 2016

ta có : a<= 1 => a-1<=0 

          b<=1 => b-1<=0  

=> (b-1)(a-1) >= 0 => ab-a-b+1 >=0 => ab+1>=a+b => 2ab+1>= a+b ( vì ab>=0) 

=> 2ab+1+1>= a+b+c  ( vì 1>= c) 

2ab+2>=a+b+c => 1/2ab+2<=1/a+b+c c/ab+1<= 2c/a+b+c

chứng minh tương tự ta có b/ac+1 <= 2b/a+b+c ;   a/bc+1<= 2a/a+b+c 

=> a/bc+1+b/ac+1 + c/ab+c <= 2a+2b+2c / a+b+c = 2 ( đpcm )

2 tháng 2 2020

\(0\le a\le b\le c\le1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow ab-a-b+1\ge0\)

\(\Rightarrow ab+1\ge a+b\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\le\frac{2c}{a+b+c}\)

Tương tự ta có: \(\frac{a}{bc+1}\le\frac{2a}{a+b+c}\)\(\frac{b}{ca+1}\le\frac{2b}{a+b+c}\)

Cộng ba vế của các bđt trên, ta được:

\(\text{Σ}_{cyc}\frac{a}{bc+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)

2 tháng 2 2020

Vì \(0\le a\le b\le c\le1\)nên: 

\(\left(a-1\right)\left(b-1\right)\ge0\)\(\Rightarrow ab-a-b+1\ge0\)\(\Rightarrow ab+1\ge a+b\)\(\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\) (1)

\(\left(b-1\right)\left(c-1\right)\text{​​}\ge0\)\(\Rightarrow bc-b-c+1\text{​​}\ge0\)\(\Rightarrow bc+1\text{​​}\ge b+c\)\(\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\)   (2)

\(\left(a-1\right)\left(c-1\right)\ge0\)\(\Rightarrow ac-a-c+1\text{​​}\ge0\)\(\Rightarrow ac+1\ge a+c\)\(\Rightarrow\frac{b}{ac+1}\le\frac{b}{a+c}\)   (3)

Từ (1), (2), (3) \(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)  (4)

Mà \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)  (5)

Từ (4) và (5) \(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)  (đpcm)