K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

Ta có a2 + 1 \(\ge\)2a 

Khi đó \(\frac{1}{a^2+ab-a+5}=\frac{1}{a^2+1+ab-a+4}\le\frac{1}{2a+ab-a+4}=\frac{1}{ab+a+4}\)

Tương tự ta được \(\frac{1}{b^2+bc-b+5}\le\frac{1}{bc+b+4};\frac{1}{c^2+ac-c+5}\le\frac{1}{ac+c+4}\)

Cộng vế với vế => A \(\le\frac{1}{ab+a+4}+\frac{1}{bc+b+4}+\frac{1}{ca+c+4}\)

=> 4A \(\le\frac{4}{ab+a+1+3}+\frac{4}{bc+b+1+3}+\frac{4}{ca+c+1+3}\)

\(\le\frac{1}{ab+a+1}+\frac{1}{3}+\frac{1}{bc+b+1}+\frac{1}{3}+\frac{1}{ac+a+1}+\frac{1}{3}\)

\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+a+1}+1\)

\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ab}+1\)

\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+1=\frac{ab+a+1}{ab+a+1}+1=1+1=2\)

=> \(A\le\frac{1}{2}\)(Dấu "=" xảy ra <=> a = b = c = 1)

26 tháng 3 2022

cho mik hỏi tí là làm sao ra được \(\frac{4}{ab+a+1+3}\le\frac{1}{ab+a+1}+\frac{1}{3}\) vậy ạ?

13 tháng 6 2019

Khó 😩 hay suy nghỉ mà đau 🦁🦁🦁🦁

13 tháng 6 2019

\(\frac{1}{\sqrt{1+a^2}}=\frac{\sqrt{bc}}{\sqrt{bc+a.abc}}=\frac{\sqrt{bc}}{\sqrt{bc+a\left(a+b+c\right)}}=\frac{\sqrt{bc}}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

Tương tự và cộng lại \(\Rightarrow P\le\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\sqrt{3}\)

15 tháng 9 2017

đặt \(a+b=x,b+c=y;c+a=z\)

ta có \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\Rightarrow3-\frac{1}{x+1}-\frac{1}{y+1}-\frac{1}{z+1}=1\) \(\)

=> \(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1\)

=> \(\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{x}{x+1}=\frac{1}{x+1}\)

Áp dụng bđt cô si ta có \(\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)

=> \(\frac{1}{x+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)

tương tự ta có 

\(\frac{1}{y+1}\ge2\sqrt{\frac{zx}{\left(z+1\right)\left(x+1\right)}}\)

\(\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)

nhân từng vế của 3 bđt cùng chièu ta có 

\(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge8\sqrt{\frac{x^2y^2z^2}{\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2}}=8.\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\) 

=> \(1\ge8xyz\Rightarrow xyz\le\frac{1}{8}\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

13 tháng 6 2019

Dự đoán xảy ra cực trị khi a = b = c  =2. Khi đó P =\(\frac{3\sqrt{2}}{4}\). Ta sẽ chứng minh đó là MAX của P

Ta có: \(\left(\frac{a+b+c}{3}\right)^3-\left(a+b+c\right)\ge abc-\left(a+b+c\right)=2\)

Đặt a + b +c = t>0 suy ra \(\frac{t^3-27t}{27}\ge2\Leftrightarrow t^3-27t\ge54\Leftrightarrow t^3-27t-54\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}t\ge6\\t=-3\left(L\right)\end{cases}}\). Do vậy \(t\ge6\) (em làm tắt xiu nhé,dài quá)

\(P=\Sigma_{cyc}\frac{2}{\sqrt{2}.\sqrt{2\left(a^2+b^2\right)}}\le\sqrt{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

Giờ đi chứng minh \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{3}{4}\)

Em cần suy ra nghĩ tiếp:(

13 tháng 6 2019

suy ra -> suy nghĩ giúp em ạ!

 _tth_