Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Ta có:
\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)
$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$
Bài 2:
Vì $a,b,c,d\in [0;1]$ nên
\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)
Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$
Tương tự:
$c+d\leq cd+1$
$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$
Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$
$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$
$=3-\frac{2abcd}{abcd+1}\leq 3$
Vậy $N_{\max}=3$
\(P=\dfrac{1}{abc}+\dfrac{1}{a^2+b^2+c^2}=\dfrac{a+b+c}{abc}+\dfrac{1}{a^2+b^2+c^2}\)
\(=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\left(1\right)\)
\(\)\(\left\{{}\begin{matrix}a+b+c=1\\\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{9}{ab+bc+ac}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow P\ge\dfrac{9}{ab+bc+ac}+\dfrac{1}{a^2+b^2+c^2}\)
\(=\dfrac{1}{2\left(ab+bc+ac\right)}+\dfrac{1}{a^2+b^2+c^2}+\dfrac{17}{2\left(ab+bc+ac\right)}\)
\(\Rightarrow P\ge\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{17}{2\left(ab+bc+ac\right)}\)
\(\Rightarrow P\ge9+\dfrac{17}{2\left(ab+bc+ac\right)}\)
mà \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\)
\(\Rightarrow P\ge9+\dfrac{17}{2.\dfrac{1}{3}}=9+\dfrac{17.3}{2}=\dfrac{18+17.3}{2}=\dfrac{69}{2}\)
\(\Rightarrow Min\left(P\right)=\dfrac{69}{2}\)
Vi a + b + c = 1 nên bt tương đương với \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
Ta có : \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{1}{3}\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\)( 1 )
Mặt khác :\(\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\le\left(\frac{\left(a+b+c\right)^2}{3}\right)^3=\frac{1}{27}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow P\le\frac{1}{3}.\frac{1}{27}=\frac{1}{81}\)
Dấu "=" xảy ra <=> a = b = c = 1/3
Vậy maxP = 1/81 <=> a = b = c = 1/3
Dễ dàng chứng minh được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với \(x,y>0\)(1)
Dấu bằng xảy ra \(\Leftrightarrow x=y>0\)
Ta có:
\(\frac{a}{bc\left(a+1\right)}=\frac{a}{abc+bc}=\frac{a}{ab+bc+ca+bc}=\frac{a}{\left(ab+bc\right)+\left(bc+ca\right)}\)
Áp dụng (1), ta được:
\(\frac{1}{ab+bc}+\frac{1}{bc+ca}\ge\frac{4}{\left(ab+bc\right)+\left(bc+ca\right)}\)
\(\Leftrightarrow\frac{1}{4\left(ab+bc\right)}+\frac{1}{4\left(bc+ca\right)}\ge\frac{1}{ab+bc+bc+ca}\)
\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{ab+bc+bc+ca}\)
\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{bc\left(a+1\right)}\left(2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow b=c>0\)
Chúng minh tương tự, ta được:
\(\frac{b}{4}\left(\frac{1}{ab+ca}+\frac{1}{bc+ca}\right)\ge\frac{b}{ca\left(b+1\right)}\left(3\right)\)
Dấu bằng xảu ra \(\Leftrightarrow a=c>0\).
\(\frac{c}{4}\left(\frac{1}{ac+ab}+\frac{1}{ab+bc}\right)\ge\frac{c}{ab\left(c+1\right)}\left(4\right)\)
Từ (2), (3) và (4), ta được:
\(\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\le\)\(\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ac}\right)+\frac{b}{4}\left(\frac{1}{ac+bc}+\frac{1}{ac+ab}\right)\)\(+\frac{c}{4}\left(\frac{1}{ab+bc}+\frac{1}{ab+ac}\right)\)
\(\Leftrightarrow P\le\frac{1}{4}.\left(\frac{a}{ab+bc}+\frac{c}{ab+bc}\right)+\frac{1}{4}\left(\frac{a}{bc+ac}+\frac{b}{bc+ac}\right)\)\(+\frac{1}{4}\left(\frac{b}{ab+ac}+\frac{c}{ab+ac}\right)\)
\(\Leftrightarrow P\le\frac{a+c}{4\left(ab+bc\right)}+\frac{a+b}{4\left(bc+ac\right)}+\frac{b+c}{4\left(ab+ac\right)}\)
\(\Leftrightarrow P\le\frac{a+c}{4b\left(a+c\right)}+\frac{a+b}{4c\left(a+b\right)}+\frac{b+c}{4a\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{1}{4b}+\frac{1}{4c}+\frac{1}{4a}\)
\(\Leftrightarrow P\le\frac{1}{4}\left(\frac{ab+bc+ca}{abc}\right)\)
\(\Leftrightarrow P\le\frac{1}{4}.\frac{abc}{abc}=\frac{1}{4}.1=\frac{1}{4}\)( vì \(ab+bc+ca=abc\))
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=abc\end{cases}}\Leftrightarrow a=b=c=3\)
Vậy \(minP=\frac{1}{4}\Leftrightarrow a=b=c=3\)
áp dụng bđt bunhia cốp xki ta có cặp số \(\left(a,2b,c\right)\left(1,\sqrt{2},1\right)\)
\(\left(a^2+2b^2+c^2\right)\left(1+\sqrt{2}+1\right)>=\left(a+b+c\right)^2\)
\(a^2+2b^2+c^2>=\frac{0^2}{2+\sqrt{2}}=0\)
dấu "=" xảy ra khi và chỉ khi \(\frac{a^2}{1}=\frac{b^2}{\sqrt{2}}=\frac{c}{1}\)
vậy min P =0
sorry bạn mình ko tìm đc giá trị lớn nhất mà chỉ tìm đc giá trị nhỏ nhất thôi