K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 5 2020

\(a^2+1+b^2+1+c^2+1\ge2a+2b+2c\)

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

Cộng vế với vế:

\(3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Ta có:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\ge3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

20 tháng 2 2017

Xét: \(\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{\left(a+b+c\right)a+bc}+\frac{a+2b+c}{\left(a+b+c\right)b+ca}+\frac{a+b+2c}{\left(a+b+c\right)c+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{a^2+ab+ca+bc}+\frac{a+2b+c}{ab+b^2+bc+ca}+\frac{a+b+2c}{ac+bc+c^2+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{a\left(a+b\right)+c\left(a+b\right)}+\frac{a+2b+c}{b\left(b+a\right)+c\left(b+a\right)}+\frac{a+b+2c}{c\left(a+c\right)+b\left(a+c\right)}\)

\(\Leftrightarrow\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}+\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}+\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\left(a+b\right)\left(a+c\right)\le\left(\frac{2a+b+c}{2}\right)^2=\frac{\left(2a+b+c\right)^2}{4}\\\left(b+a\right)\left(b+c\right)\le\left(\frac{a+2b+c}{2}\right)^2=\frac{\left(a+2b+c\right)^2}{4}\\\left(a+c\right)\left(b+c\right)\le\left(\frac{a+b+2c}{2}\right)^2=\frac{\left(a+b+2c\right)^2}{4}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}\ge\frac{4\left(2a+b+c\right)}{\left(2a+b+c\right)^2}=\frac{4}{2a+b+c}\\\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}\ge\frac{4\left(a+2b+c\right)}{\left(a+2b+c\right)^2}=\frac{4}{a+2b+c}\\\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\ge\frac{4\left(a+b+2c\right)}{\left(a+b+2c\right)^2}=\frac{4}{a+b+2c}\end{matrix}\right.\)

\(\Rightarrow VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

Xét: \(\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\ge\frac{\left(2+2+2\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{36}{4\left(a+b+c\right)}=\frac{36}{12}=3\)

\(VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

\(\Rightarrow VT\ge3\)

\(\Leftrightarrow\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\ge3\) ( đpcm )

20 tháng 2 2017

Ta có:

\(3a+bc=(a+b+c)a+bc=(a+c)(a+b)\)

\(\Rightarrow \sum \frac{a+3}{3a+bc}\)\(= \sum \frac{(a+c)+(a+b)}{(a+c)(a+b)}=2 \sum \frac{1}{a+b}\geq 2.\frac{9}{2(a+b+c)}=3\)

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

23 tháng 12 2018

Ad bđt : \(xy+yz+zx\le x^2+y^2+z^2\) (Cái bđt này c/m dễ : Nhân 2 vế với 2 -> chuyển vế -> tổng bình phương > 0 luôn đúng)

Kết hợp với bđt Cô-si cho 2 số dương ta đc

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\left(\frac{a^3}{b}+ab\right)+\left(\frac{b^3}{c}+bc\right)+\left(\frac{c^3}{a}+ac\right)-\left(ab+bc+ca\right)\)

                                   \(\ge2\sqrt{\frac{a^3}{b}.ab}+2\sqrt{\frac{b^3}{c}.bc}+2\sqrt{\frac{c^3}{a}.ac}-\left(a^2+b^2+c^2\right)\)

                                       \(=2a^2+2b^2+2c^2-a^2-b^2-c^2\)

                                        \(=a^2+b^2+c^2\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\left(1\right)\)

Áp dụng bđt Cô-si cho 2 số dương

\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(c^2+a^2\ge2ac\)

\(a^2+1\ge2a\)

\(b^2+1\ge2b\)

\(c^2+1\ge2c\)

Cộng từng vế của 6 bđt trên lại ta đc

\(3\left(a^2+b^2+c^2+1\right)\ge2\left(ab+bc+ca+a+b+c\right)\)

 \(\Leftrightarrow3\left(a^2+b^2+c^2+1\right)\ge2.6\)

\(\Leftrightarrow a^2+b^2+c^2+1\ge4\)

\(\Leftrightarrow a^2+b^2+c^2\ge3\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+b+c+ab+bc+ca=6\end{cases}}\)

                         \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+a+a+aa+aa+aa=6\end{cases}}\)(thay hết b , c thành a)

                         \(\Leftrightarrow\hept{\begin{cases}a=b=c\\3a^2+3a=6\end{cases}}\)

                        \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a^2+a-2=0\end{cases}}\)

                         \(\Leftrightarrow\hept{\begin{cases}a=b=c\\\left(a-1\right)\left(a+2\right)=0\end{cases}}\)

                          \(\Leftrightarrow a=b=c=1\)hoặc \(a=b=c=-2\)

Mà a,b,c là các số dương nên a = b = c  = 1

Vậy ............

2 tháng 2 2020

Xét \(\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{\left(a+b+c\right)a+bc}+\frac{a+2b+c}{\left(a+b+c\right)b+ca}+\frac{a+b+2c}{\left(a+b+c\right)c+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{a^2+ab+ca+bc}+\frac{a+2b+c}{ab+b^2+bc+ca}+\frac{a+b+2c}{ac+bc+c^2+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{a\left(a+b\right)+c\left(a+b\right)}+\frac{a+2b+c}{b\left(b+a\right)+c\left(b+a\right)}+\frac{a+b+2c}{c\left(a+c\right)+b\left(a+c\right)}\)

\(\Leftrightarrow\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}+\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}+\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm 

\(\Rightarrow\hept{\begin{cases}\left(a+b\right)\left(a+c\right)\le\left(\frac{2a+b+c}{2}\right)^2=\frac{\left(2a+b+c\right)^2}{4}\\\left(b+a\right)\left(b+c\right)\le\left(\frac{a+2b+c}{2}\right)^2=\frac{\left(a+2b+c\right)^2}{4}\\\left(a+c\right)\left(b+c\right)\le\left(\frac{a+b+2c}{2}\right)^2=\frac{\left(a+b+2c\right)^2}{4}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}\ge\frac{4\left(2a+b+c\right)}{\left(2a+b+c\right)^2}=\frac{4}{2a+b+c}\\\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}\ge\frac{4\left(a+2b+c\right)}{\left(a+2b+c\right)^2}=\frac{4}{a+2b+c}\\\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\ge\frac{4\left(a+b+2c\right)}{\left(a+b+2c\right)^2}=\frac{4}{a+b+2c}\end{cases}}\)

\(\Rightarrow VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

Xét \(\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

Áp dụng bất đẳng thức cộng mẫu số 

\(\Rightarrow\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\ge\frac{\left(2+2+2\right)^2}{2a+b+c+a+2b+c+a+b+2c}\)

\(=\frac{36}{4\left(a+b+c\right)}=\frac{36}{12}=3\)

Mà \(VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

\(\Rightarrow VT\ge3\)

\(\Leftrightarrow\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\ge3\left(đpcm\right)\)

Chúc bạn học tốt !!!

13 tháng 12 2018

\(a^3+b^3+1=a^3+b^3+abc\ge ab\left(a+b+c\right)\)

=>  \(\frac{\sqrt{1+a^3+b^3}}{ab}\ge\frac{\sqrt{ab\left(a+b+c\right)}}{ab}=\frac{\sqrt{a+b+c}}{\sqrt{ab}}\)

Tuong tu:  \(\frac{\sqrt{1+b^3+c^3}}{bc}\ge\frac{\sqrt{a+b+c}}{\sqrt{bc}}\)

                    \(\sqrt{1+c^3+a^3}\ge\frac{\sqrt{a+b+c}}{\sqrt{ca}}\)

suy ra:  \(\frac{\sqrt{1+a^3+b^3}}{ab}+\frac{\sqrt{1+b^3+c^3}}{bc}+\frac{\sqrt{1+c^3+a^3}}{ca}\ge\sqrt{a+b+c}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)

\(\ge\sqrt{3\sqrt[3]{abc}}.3\sqrt[3]{\frac{1}{\sqrt{ab}}.\frac{1}{\sqrt{bc}}.\frac{1}{\sqrt{ca}}}=3\sqrt{3}\)  (dpcm)

24 tháng 8 2020

Ta viết lại bất đẳng thức cần chứng minh thành\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge6\)

Theo giả thiết, ta có a + b + c = 3 nên\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}=\sqrt{\frac{2\left(a+a+b+c\right)}{a+bc}}=\sqrt{2\left(\frac{a+b}{a+bc}+\frac{a+c}{a+bc}\right)}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}\)(Áp dụng bất đẳng thức \(\sqrt{2\left(x+y\right)}\ge\sqrt{x}+\sqrt{y}\))

Hoàn toàn tương tự, ta được: \(\sqrt{\frac{2\left(b+3\right)}{b+ca}}\ge\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}\)\(\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+b}{b+ca}}\ge\frac{4\sqrt{a+b}}{\sqrt{a+bc}+\sqrt{b+ca}}\ge\frac{2\sqrt{2}\sqrt{a+b}}{\sqrt{a+bc+b+ca}}=\frac{2\sqrt{2}}{\sqrt{c+1}}\)(*)

Tương tự ta có: \(\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{b+c}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{a+1}}\)(**) ; \(\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+a}{a+bc}}\ge\frac{2\sqrt{2}}{\sqrt{b+1}}\)(***)

Cộng theo vế ba bất đẳng thức (*), (**) và (***) suy ra \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)\(\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)

Do đó ta có: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\ge6\)hay \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{3}{\sqrt{2}}\)

Thật vậy, áp dụng bất đẳng thức Cauchy – Schwarz ta được \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{9}{\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}}\ge\frac{9}{\sqrt{3\left(a+b+c+3\right)}}=\frac{3}{\sqrt{2}}\)

Vậy bất đẳng thức được chứng minh 

Đẳng thức xảy ra khi a = b = c = 1

15 tháng 2 2020

Chứng minh BĐT vế trái:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\)

Tiếp theo, chứng minh BĐT vế phải:\(a^2+b^2+c^2\ge3\)

Từ giả thiết suy ra: \(6=a+b+c+ab+bc+ca\le a+b+c+\frac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\ge3\)

Ta có: \(VT\ge\frac{\left(a+b+c\right)^2}{3}\ge3\)

Đẳng thức xảy ra khi a = b = c = 1