Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{16a}{3}+\frac{1}{b}+\frac{4}{4c}\ge\frac{16a}{9}+\frac{16a}{9}+\frac{16a}{9}+\frac{9}{b+4c}\ge4\sqrt[4]{\frac{4096}{81}.\frac{a^3}{b+4c}}=\frac{32}{3}\)
"=" \(\Leftrightarrow\)\(\left(a;b;c\right)=\left(\frac{3}{2};\frac{9}{8};\frac{9}{16}\right)\)
cho a,b,c > 0 . Tìm GTNN của
\(P=\frac{2+a^3}{2+a+b^3}+\frac{2+b^3}{2+b+c^3}+\frac{2+c^3}{2+c+a^3}\)
\(VT=\frac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}+\frac{1}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}+\frac{1}{\sqrt{\left(c+1\right)\left(c^2-c+1\right)}}\)
\(VT\ge\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\)
Do \(abc=8\) nên tồn tại các số dương x;y;z sao cho: \(\left\{{}\begin{matrix}a=\frac{2x}{y}\\b=\frac{2y}{z}\\c=\frac{2z}{x}\end{matrix}\right.\)
\(\Rightarrow VT\ge\frac{y^2}{2x^2+y^2}+\frac{z^2}{2y^2+z^2}+\frac{x^2}{2z^2+x^2}\)
\(\Rightarrow VT\ge\frac{x^4}{x^4+2x^2z^2}+\frac{y^4}{y^4+2x^2y^2}+\frac{z^4}{z^4+2y^2z^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2}=1\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Áp dụng bất đẳng thức Cauchy ta có :
\(VT=\frac{1}{\sqrt{a}}+\frac{3}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)
\(=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)
\(\ge\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{2\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)
\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)
\(\ge\frac{\left(1+2+1+2+2\right)^2}{2\sqrt{3c+2a}+3\sqrt{b}+\sqrt{a}}\)
\(\ge\frac{64}{\sqrt{\left(1+2^2+3\right)\left(a+2a+3c+3b\right)}}\)
\(=\frac{64}{\sqrt{24\left(a+c+b\right)}}=\frac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}=VP\)
\(P=\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\)
\(P=\dfrac{a^4}{\sqrt{a^2\left(b^2+3\right)}}+\dfrac{b^4}{\sqrt{b^2\left(c^2+3\right)}}+\dfrac{c^4}{\sqrt{c^2\left(a^2+3\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a^2\left(b^2+3\right)}\le\dfrac{a^2+b^2+3}{2}\\\sqrt{b^2\left(c^2+3\right)}\le\dfrac{b^2+c^2+3}{2}\\\sqrt{c^2\left(a^2+3\right)}\le\dfrac{c^2+a^2+3}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}\le\dfrac{2\left(a^2+b^2+c^2\right)+3}{2}=\dfrac{9}{2}\)
\(\Rightarrow\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\ge\dfrac{2\left(a^2+b^2+c^2\right)^2}{9}=2\)
Vì \(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\)
\(\Rightarrow VT\ge2\)
\(\Leftrightarrow\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\ge2\)
\(\Leftrightarrow P\ge2\)
Vậy \(P_{min}=2\)
đặt (với a, b, c > 0). Khi đó phương trình đã cho trở thành:
a = b = c = 2
Suy ra: x = 2013, y = 2014, z = 2015.
\(\frac{a^3}{\left(1-a\right)^2}+\frac{1-a}{8}+\frac{1-a}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1-a\right)^2}.\frac{\left(1-a\right)}{8}.\frac{1-a}{8}}=\frac{3a}{4}\)
Suy ra \(\frac{a^3}{1-a^2}\ge\frac{3a}{4}-\frac{\left(1-a\right)}{4}=\frac{4a-1}{4}\)
Tương tự hai BĐT còn lại rồi cộng theo vế:
\(A\ge\frac{4\left(a+b+c\right)-3}{4}=\frac{1}{4}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)