Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nha
a) xét tg ABM và tg CDM có
MA=MC(M là trung điểm AC )
\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh )
MB=MD(gt)
\(\Rightarrow\)tg ABM=tg CDM (c-g-c)
b) bạn xem lại đề bài nha mik nghĩ là đề sai
c) ta có MB=MD,MA=MC(gt)
mà M lại là trung điểm của BD,AC
\(\Rightarrow\)ABCD là hình chữ nhật
có E là trung diểm BC
mà EM cắt AD tại F
\(\Rightarrow F\)là trung điểm AD (dpcm)
P/s : sửa đề : MB = MD B C E M F D A
a) Xét tam giác ABM và tam giác CDM có :
AM = CM ( vì M là trung điểm của AC )
Góc AMB = góc CMD ( 2 góc đối đỉnh )
MB = MD ( GT )
=> tam giác ABM = tam giác CDM ( c - g - c )
b) Theo chứng minh trên , ta có : tam giác ABM = tam giác CDM
=> Góc BAM = Góc MCD ( 2 góc tương ứng )
Mà góc BAM = 90o ( Tam giác ABC vuông tại A )
=> Góc MCD = 90o
=> AC vuông góc với DC tại C
c) +) Xét tam giác ABC có :
E là trung điểm của BC ( GT )
M là trung điểm của AC ( GT )
=> EM là đường trung bình của tam giác ABC
=> EM // AB ( tính chất )
Mà AB // CD ( do AC \(\perp\)CD ; AC \(\perp\) AB )
=> EM // CD hay MF // CD
+) Xet tam giác ACD có :
M là trung điểm của AC
MF // CD
=> F là trung điểm của AD ( điều phải chứng mình )
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)
a,Xét tam giác AMB và tam giác CMK có:
AM=MB(M là trung điểm của AC)
góc AMB=góc CMK
BM=KM(gt)
=> TAm giác AMB=tam giác CMK(c.g.c)
=> góc BAM=góc KCM (hai cạnh tương ứng)
Vậy KC vuông góc với AC
b,Theo câu a ta có tam giác AMB=tam giác CMK (c.g.c)
=>AB=CK (hai cạnh tương ứng) (1)
Mặt khác AB vuông góc với AC và CK vuông góc với AC (theo câu a) nên:
AB song song với CK (2)
Từ (1) và (2) => AKCB là hình bình hành (Tứ giác có hai cạnh song song và bằng nhau)
Vậy AK song song với BC
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a: Xét ΔAMB và ΔCMK có
MA=MC
\(\widehat{AMB}=\widehat{CMK}\)
MB=MK
Do đó: ΔAMB=ΔCMK
b: Ta có: ΔAMB=ΔCMK
nên \(\widehat{MAB}=\widehat{MCK}\)
mà hai góc này ở vị trí so le trong
nên AB//CK
hay BC⊥KC