Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: DA/DC=BA/BC=căn 25^2-9^2/25=căn 544/25
b: Xét ΔHDC vuông tại H và ΔABC vuông tại A có
góc C chung
=>ΔHDC đồng dạng với ΔABC
=>CH/CA=CD/CB
=>CH*CB=CA*CD
a) Xét tam giác AHD và tam giác CKD có:
AHD=CKD=90
\(D_1=D_2\) (2 góc đối đỉnh)
=> tam giác AHD đồng dạng tam giác CKD (g-g)
=> đpcm
b) Xét tam giác AHB và tam giác CKB có
AHB=BKC=90
ABD=DBC ( BD là tia phân giác ABC)
=> Tam giác AHB đồng dạng CKB (g-g)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)
a: Xet ΔABC vuông tại A và ΔDHC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔDHC
b: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=8/8=1
=>DA=3cm; DC=5cm
ΔCHD đồng dạng vơi ΔCAB
=>CH/CA=CD/CB=HD/AB
=>CH/8=5/10=1/2=HD/6
=>CH=4cm; HD=3cm
=>S CHD=1/2*4*3=6cm2
a) Tự cm
b) Vì AB//DM mà ABvuoong góc với AC nên DM vuông góc với AC
Vì AH vuông góc với BC mà M thuộc BC nên CH vuông góc với AD
Xét tam giác ADC có:
DM vuông góc với AC
CM vuông góc với AD
mà DM cắt CM tại M
=> M là trực tâm của tam giác ADC
=> AM vuông góc với CD
=> đpcm
c) Xét tam giác NCm có
I là trung điểm của CM
=> IM=IN=IC
Xét tam giác IN< có
IM=IN
=> IMN cân tại I
=> IMN=INM góc
mà IMN=DMH
=> INM=DMH(3)
Xét tam giác AND có
H là trung điểm của AD
=> NH=HD=HA
tương tự tam giác NHD cân tại H
=>D=N( góc)(2)
mà HDN+DMH=90 độ(1)
Từ 1.2.3=> INM+MNH=90 độ
hay IN vuông góc với NH
đpcm
a: DA/DC=BA/BC=\(\dfrac{\sqrt{25^2-9^2}}{25}=\dfrac{4\sqrt{34}}{25}\)
b: Xet ΔABC vuông tại A và ΔHDC vuông tạiH có
góc C chung
=>ΔABC đồng dạg với ΔHDC
=>CA/CH=CB/CD
=>CA*CD=CH*CB