K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

a) Tự CM AHBΔ∼ΔCAB (g.g)

=> \(\widehat{HAB}=\widehat{C}\)

Xét ΔAHB và ΔCHA có:

\(\widehat{AHB}=\widehat{AHC}\) \(=90^0\)

\(\widehat{HAB}=\widehat{C}\) (cmtrn)

=> ΔAHB∼ΔCHA (g.g)

b) Theo câu a) ta có: ΔAHB∼ΔCHA

=> \(\frac{AH}{CH}=\frac{HB}{AH}\Leftrightarrow AH^2=HB.CH\)

\(\Leftrightarrow AH^2=9\times16=144\left(cm\right)\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Ta có: SABC=\(\frac{1}{2}\cdot BC\cdot AH=\frac{1}{2}\cdot\left(BH+HC\right)\cdot AH\)

\(\Leftrightarrow S_{ABC}=\frac{1}{2}\cdot\left(9+16\right)\cdot12=150\left(cm\right)\)

c)Xét ΔABH có: \(\widehat{AHB}\) \(=90^0\)

=> Áp dụng đl Pitago

=> \(BH^2+AH^2=AB^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\left(cm\right)\)

\(\Leftrightarrow AB=25\left(cm\right)\)

Theo câu a) ta có: ΔAHB∼ΔCHA

=> \(\widehat{HBA}=\widehat{HAC}\)

Xét ΔHBA và ΔKAH có:

\(\widehat{AHB}=\widehat{HKA}\) \(=90^0\)

\(\widehat{HBA}=\widehat{HAK}(hay \widehat{HAC})\) (cmtrn)

=> ΔHBA∼ΔKAH (g.g)

=> \(\frac{HB}{KA}=\frac{BA}{AH}\Leftrightarrow HB\cdot AH=BA\cdot KA\)

\(\Leftrightarrow AK=\frac{HB\cdot AH}{BA}=\frac{9\cdot12}{25}=4,32\left(cm\right)\)

Xét ΔAHK có: \(\widehat{AKH}\) \(=90^0\)

=> Áp dụng đl Pitago

=> \(HK^2+AK^2=AH^2\Leftrightarrow HK^2=AH^2-AK^2\)

\(\Leftrightarrow HK^2=12^2-4,32^2=125,3376\left(cm\right)\)

\(\Leftrightarrow HK\approx11,196\left(cm\right)\)

Ta có: 2PAHK=AH+HK+AK=12+11,196+4,32=12,516(cm)

SAHK=\(\frac{1}{2}\cdot HK\cdot AK=\frac{1}{2}\cdot11,196\cdot4,32\approx24,18\left(cm^2\right)\)

1 tháng 5 2019

ko chắc câu c) mk lm đúng đâu. Tại mk chỉ lm theo ý hiểu thôi

a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có

góc C chung

=>ΔAHC đồng dạng với ΔHKC

b: Xet ΔHAC vuông tại H có HK là đường cao

nên HK^2=AK*KC

c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)

CK=4^2/5=3,2cm

=>AK=1,8cm

=>HK=2,4cm

\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)

a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có

góc C chung

=>ΔAHC đồng dạng với ΔHKC

b: Xet ΔHAC vuông tại H có HK là đường cao

nên HK^2=AK*KC

c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)

CK=4^2/5=3,2cm

=>AK=1,8cm

=>HK=2,4cm

\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{ACB}\) chung

Do đó: ΔABC đồng dạng với ΔHAC

b: Xét ΔKHB vuông tại K và ΔKAH vuông tại K có

\(\widehat{KHB}=\widehat{KAH}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔKHB đồng dạng với ΔKAH

=>\(\dfrac{KH}{KA}=\dfrac{KB}{KH}\)

=>\(KH^2=KA\cdot KB\)

c: Ta có: ΔAHC vuông tại H

=>\(HC^2+HA^2=AC^2\)

=>\(HA^2=10^2-8^2=36\)

=>\(HA=\sqrt{36}=6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HB=\dfrac{6^2}{8}=4,5\left(cm\right)\)

BC=BH+CH

=4,5+8

=12,5(cm)

Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot12,5\cdot6=3\cdot12,5=37,5\left(cm^2\right)\)

18 tháng 4 2023

Với 9 tia chung gốc số góc tạo thành là

A. 16 góc

B. 72 góc

C. 36 góc 

D. 42 góc

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

HA=9*12/15=108/15=7,2cm

HB=9^2/15=81/15=5,4cm

\(S_{HBA}=\dfrac{1}{2}\cdot7.2\cdot5.4=19.44\left(cm^2\right)\)

 

Bài làm

b) Xét tam giác HAP có:

Q là trung điểm BH

P là trung điểm AH

=> QP là đường trung bình

=> QP // AB 

=> \(\widehat{HQP}=\widehat{QPA}\)

Xét tam giác HQP và tam giác ABC có:

\(\widehat{HQP}=\widehat{QPA}\)

\(\widehat{PHQ}=\widehat{BAC}\left(=90^0\right)\)

=> Tam giác HQP ~ Tam giác ABC ( g - g )

=> \(\frac{HQ}{AB}=\frac{HP}{AC}\Rightarrow\frac{AC}{AB}=\frac{HP}{HQ}\Rightarrow\frac{AB}{AC}=\frac{HQ}{HP}\)             (1)

Xét tam giác HAB có: 

QP // AB

=> Tam giác HQP ~ HAB 

=> \(\frac{HQ}{QB}=\frac{HP}{PA}\Rightarrow\frac{HQ}{HP}=\frac{QB}{PA}\)             (2)

Từ (1) và (2) => \(\frac{AB}{AC}=\frac{QB}{PA}\)

Xét tam giác AHC vuông ở H có: 

\(\widehat{PAC}+\widehat{BCA}=90^0\)(3)

Xét tam giác ABC vuông ở A có:

\(\widehat{CBA}+\widehat{BCA}=90^0\)  (4)

Từ (3) và (4) => \(\widehat{PAC}=\widehat{CBA}\)

Xét tam giác ABQ và tam giác CAP có:

\(\frac{AB}{AC}=\frac{QB}{PA}\)

\(\widehat{PAC}=\widehat{CBA}\)

=> Tam giác ABQ ~ Tam giác CAP ( c-g-c ) ( đpcm )

Bài làm

a) Vì AM là trung tuyến

=> M là trung điểm BC 

=> BM = MC = BC/2 = ( BH + HC )/2 = ( 9 + 16 )/2 = 12,5 ( cm )

Ta có: BH + HM + MC = BC

=> BH + HM + MC = BH + HC

hay 9 + HM + 12,5 = 9 + 16

=> HM = 9 + 16 - 9 - 12,5 

=> HM = 3,5 ( cm )

Vì tam giác ABC là tam giác vuông ở A

Mà AM trung tuyến

=> AM = MC = BM = 12,5 ( cm )

Xét tam giác AHM vuông ở H có:

Theo định lí Pytago có:

AH2 = AM2 - HM2 

hay AH2 = 12,52 - 3,52 

=> AH2 = 156,25 - 12,25

=> AH2 = 144

=> AH = 12 ( cm )

SABC = 1/2 . AH . HM = 1/2 . 12 . 3,5 = 21 ( cm2 )

Xét tam giác AHB vuông ở H có:

Theo định lí Py-ta-go có:

AB2 = BH2 + AH2 

=> AB2 = 92 + 212 

=> AB2 = 81 + 441

=> AB2 = 522

=> AB \(\approx\)22,8 ( cm )

Xét tam giác AHC vuông ở H có: 

Theo định lí Pytago có:

AC2 = AH2 + HC2 

=> AC2 = AH2 + ( HM + MC )2 

hay AC2 = 212 + ( 3,5 + 12,5 )2 

=> AC2 = 441 + 256

=> AC2 = 697

=> AC \(\approx\)26,4 ( cm )

Chu vi tam giác ABC là: AB + AC + BC = 22,8 + 26,4 + 25 = 74,2 ( cm )

SABC = 1/2 . AH . BC = 1/2 . 21 . 25 = 262,5 ( cm2 )

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/AB

=>BA^2=BH*BC

b: \(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

AC=căn 16*25=20(cm)

S=15*20/2=150cm2

c: AD/DC=HA/HC=12/16=3/4

Bạn kham khảo link này nhé.

Câu hỏi của Trần Ngô Anh Tuyền - Toán lớp 8 - Học toán với OnlineMath

15 tháng 4 2019

Link đâu ạ em tham khảo vs