Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình:
Tam giác ABC vuông tại A
---> BA là đường cao ( BA vuông góc AC)
---> S tam giác ABC = \(\frac{a.h}{2}=\frac{AC.BC}{2}=\frac{4.3}{2}=6cm^2\)
Pytago tam giác ABC vuông tại A:
BC2 = BA2 + AC2
= 9 + 16
= 25
BC= 5 cm
Vì AH cũng là đường cao của tam giác ABC
----> AH = \(\frac{2.S}{a}=\frac{2.6}{BC}=\frac{12}{5}=2,4cm\)
Theo mình thì mình làm vậy á, nếu mình làm sai thì bạn sửa giùm mình nha
xét tam giác ABC vuông ở A co \(BC^2=AB^2+AC^2\left(pitago\right)\)
\(BC^2=9+16=25\Rightarrow BC=5\)
xet tgABH va tgCBA co goc B chung ; gAHB=gBAC =90
=>tgABH đồng dạng tgCBA =>\(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{4}=\frac{3}{5}\Rightarrow AH=\frac{3\cdot4}{5}=\frac{12}{5}\)
3:
a: AE/AD=9/6=3/2
AD/AC=6/12=1/2
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng vơi ΔABC
c: IB/IC=AB/AC=AD/AE
=>IB*AE=IC*AD
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
A B 2 + A C 2 = B C 2 ⇔ 3 2 + 4 2 = B C 2
Ta có tam giác vuông ABC=> AB2+AC2=BC2(do BC là cạnh huyền)
Mà AB=3cm; AC=4cm ta đc
32+42=BC2
=>9+16=BC2
=>BC=5(cm)
Diện tích hình tam giác là: 3.4/2=6(cm2)
Độ dài AH là: 6.2/5=2,4cm
Vậy AH=2,4cm
cuối cùng là = bao nhiu?