K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

E

a) xét tam giác ABC và tam giác HBA có:

góc B chung

góc BAC=góc AHB=90 độ

\(\Rightarrow\Delta ABC\infty\Delta HBA\left(g.g\right)\Rightarrow\dfrac{AB}{BH}=BCAB\Rightarrow AB^2=BC\cdot BH\)

tam giác ABC vuông tại A nên theo điịnh lí pytago:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

ta có: \(AB^2=BC\cdot BH\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

b) ta có: HK vuông góc với AC mafg AC vuông góc với AB nên HK//AB

\(\Rightarrow\dfrac{HK}{AB}=\dfrac{HC}{BC}=\dfrac{BC-BH}{BC}\Rightarrow HK=\dfrac{AB\cdot\left(BC-BH\right)}{BC}=\dfrac{6\cdot\left(10-3,6\right)}{10}=3,84\left(cm\right)\)

c)BE là phân giác của tam giác ABH nên \(\dfrac{EH}{AE}=\dfrac{BH}{AB}\)

tương tự :BD là phân giác của tam giác ABC nên:

\(\dfrac{AD}{DC}=\dfrac{AB}{BC}\\ \Rightarrow\dfrac{AD}{DC}\cdot\dfrac{BC}{BH}\cdot\dfrac{EH}{EA}=\dfrac{AB}{BC}\cdot\dfrac{BC}{BH}\cdot\dfrac{BH}{AB}=1\)

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=3.6\left(cm\right)\)

=>CH=6,4(cm)

b: XétΔCAB có HK//AB

nên \(\dfrac{HK}{AB}=\dfrac{CH}{CB}\)

=>HK/6=6,4/10=16/25

hay \(HK=\dfrac{96}{25}\left(cm\right)\)

c: Xét ΔBCA có BD là phân giác

nên DA/DC=BA/BC

Xét ΔBAH có BE là phân giác

nên EH/EA=BH/BA

\(\dfrac{DA}{DC}\cdot\dfrac{BC}{BH}\cdot\dfrac{EH}{EA}=\dfrac{BA}{BC}\cdot\dfrac{BC}{BH}\cdot\dfrac{BH}{BA}=1\)

a: Xet ΔABC và ΔHBA có

góc B chung

góc BAC=góc BHA

=>ΔABC đồg dạng với ΔHBA

b: ΔABC vuông tại A mà AH là đường cao

nên HA^2=HB*HC

c: Xet ΔCAD vuông tại A và ΔCHE vuông tai H co

góc ACD=góc HCE

=>ΔCAD đồng dạng với ΔCHE

=>\(\dfrac{S_{CAD}}{S_{CHE}}=\left(\dfrac{CA}{CH}\right)^2=\left(\dfrac{8}{6,4}\right)^2=\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\)

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{B}\) chung

Do đó: ΔABC∼ΔHBA(g-g)

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)(đpcm)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: \(AB^2=BC\cdot BH\)(cmt)

nên \(BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=\dfrac{36}{10}=3.6\left(cm\right)\)

Vậy: BH=3,6cm

21 tháng 5 2020

a) Xét tam giác ABC và tam giác HBA có

Góc BAC = góc BHA = 90độ 

góc B chung

=)tg ABC đồng dạng với tg HBA

=)AB/BH = BC/AB (cặp cạnh tương ứng)

=) AB^2 = BH.BC  (đpcm)

b) có AB^2 = BH.BC (cmt)

mà BH = 4cm , BC = BH + CH =4+9 = 13cm

=) AB^2 = 4+13 = 17

=) AB = \(\sqrt{17}\)cm

xét tg vuông ABC áp dụng định lý Py-ta-go ta có

AB^2 + AC^2 = BC^2

thay số: \(\sqrt{17}^2\)+ AC^2 = 13^2

=) AC =\(2\sqrt{38}\)cm

vậy nhé chứ ý c mik thấy đầu bài sai sai