Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của BC
N là trung điểm của AB
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AP và MN=AP
Xét tứ giác ANMP có
MN//AP
MN=AP
Do đó: ANMP là hình bình hành
mà \(\widehat{PAN}=90^0\)
nên ANMP là hình chữ nhật
a) Với ∆ABC ⊥ tại A và M là trung điểm BC, ta có:
- Theo định lý Pythagoras, ta có: AB^2 + AC^2 = BC^2
- Thay giá trị vào, ta có: 6^2 + 8^2 = BC^2
- Tính toán, ta có: 36 + 64 = BC^2
- Tổng cộng, BC^2 = 100
- Vì BC là độ dài, nên BC = √100 = 10cm
- Vì M là trung điểm BC, nên AM = MC = 10/2 = 5cm
b) Để chứng minh ABEC là hình chữ nhật, ta cần chứng minh AB // EC và AB = EC.
- Vì M là trung điểm BC, nên AM = MC.
- Vì ∆ABC ⊥ tại A, nên góc BAC = 90 độ.
- Vì M là trung điểm BC, nên BM = MC.
- Vì BM = MC và góc BAC = 90 độ, nên ∆BAM ≅ ∆CAM theo góc-góc-góc.
- Từ đó, ta có AB = AC và góc BAM = góc CAM.
- Vì AB = AC và góc BAM = góc CAM, nên ∆ABM ≅ ∆ACM theo cạnh-góc-cạnh.
- Từ đó, ta có góc AMB = góc AMC và BM = MC.
- Vì góc AMB = góc AMC và BM = MC, nên ∆BME ≅ ∆CME theo góc-góc-góc.
- Từ đó, ta có góc BME = góc CME và BM = MC.
- Vì góc BME = góc CME và BM = MC, nên BM // EC.
- Vì BM // EC và AB = AC, nên AB // EC và AB = EC.
- Từ đó, ta có ABEC là hình chữ nhật.
c) Để chứng minh AH = IK và NO = 1/2 IK, ta cần chứng minh ∆AHN ≅ ∆IKO.
- Vì AH ⊥ BC và IK ⊥ AB, nên góc HAN = góc KIO = 90 độ.
- Vì AH ⊥ BC và HN ⊥ AN, nên góc HAN = góc HNA.
- Vì IK ⊥ AB và KO ⊥ AO, nên góc KIO = góc KOI.
- Vì góc HAN = góc HNA và góc KIO = góc KOI, nên ∆AHN ≅ ∆IKO theo góc-góc-góc.
- Từ đó, ta có AH = IK và NO = 1/2 IK.
d) Vì ∆AHN ≅ ∆IKO, nên góc INK = góc HNO.
- Vì NO = 1/2 IK, nên góc HNO = góc INK.
- Từ đó, ta có góc INK = góc HNO.
\(a,\) Vì M là trung điểm AD và BC nên ABDC là hình bình hành
Mà \(\widehat{BAC}=90^0\) nên ABDC là hình chữ nhật
\(b,\) Vì H,M là trung điểm AI và AD nên HM là đường trung bình \(\Delta ADI\)
\(\Rightarrow DI\text{//}HM\) hay \(DI//BC\)
Do đó BIDC là hình thang
Vì I đx với A qua BC nên \(AB=BI\) và BC là trung trực AI
Do đó \(\Delta ABI\) cân tại B
Suy ra BC là trung trực cũng là phân giác
Do đó \(\widehat{ABC}=\widehat{CBI}\left(1\right)\)
Lại có ABDC là hcn nên \(\widehat{BCD}+\widehat{ACB}=\widehat{ACD}=90^0\)
Mà \(\Delta ABC\bot A\) nên \(\widehat{ABC}+\widehat{ACB}=90^0\)
\(\Rightarrow\widehat{BCD}=\widehat{ABC}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{CBI}=\widehat{BCD}\)
Vậy BIDC là hình thang cân