K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

a) Xét hai Δ HAC và ABC có:

góc H = góc A ( =900)

góc C chung

=> Δ HAC đồng dạng vs Δ ABC ( g.g)

b) Xét 2Δ BAH và Δ ACH có :

góc BAH= góc HCA ( cùng phụ vs HAC )

góc AHC = góc BHA ( =900)

=> Δ BAH đồng dạng vs Δ ACH ( g.g)

HA/HB= HC/HA=> HA2 = HB.HC (đpcm)

10 tháng 5 2022

a, Xét Δ HAC và Δ ABC, có :

\(\widehat{AHC}=\widehat{BAC}=90^o\)

\(\widehat{HCA}=\widehat{ACB}\) (góc chung)

=> Δ HAC ∾ Δ ABC (g.g)

=> \(\dfrac{HA}{AB}=\dfrac{HC}{AC}\)

=> \(\dfrac{HA}{HC}=\dfrac{AB}{AC}\)

b, Xét Δ AHB và Δ CHA, có :

\(\dfrac{HA}{HC}=\dfrac{AB}{AC}\) (cmt)

\(\widehat{AHB}=\widehat{CHA}=90^o\)

=> Δ AHB ∾ Δ CHA (g.g)

=> \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)

=> \(AH^2=HB.CH\)

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng với ΔABC

b: Xét ΔABC vuông tại A có AH là đường cao

nên HA^2=HB*HC

c: ΔHAC vuông tại H có HE là trung tuyến

nên AC=2HE

=>AC^2=4*HE^2

=>CH*CB=4*HE^2

14 tháng 4 2023

câu d nx thì sao bạn ;((( giúp mik với

7 tháng 3 2021

khó vãi

7 tháng 3 2021

A C H D E M N B O K

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
21 tháng 4 2021

B A C H D M

a, Xét tam giá HBA và tam giác ABC ta có : 

^AHB = ^BAC = 900

^B _ chung 

Vậy tam giác HBA ~ tam giác ABC ( g.g )  (1)

b, Xét tam giác HAC và tam giác ACB ta có : 

^AHC = ^BAC = 900

^C _ chung 

Vậy tam giác HAC ~ tam giác ACB ( g.g ) (2)

Từ (1)  ; (2) suy ra tam giác HAC ~ tam giác HBA