K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Ta có: BH+CH=BC

nên BC=63+112

hay BC=175cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=63\cdot175\\AC^2=112\cdot175\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=105\left(cm\right)\\AC=140\left(cm\right)\end{matrix}\right.\)

Xét ΔBAC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{105}=\dfrac{CD}{140}\)

mà BD+CD=175

nên Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{BD}{105}=\dfrac{CD}{140}=\dfrac{BD+CD}{105+140}=\dfrac{175}{245}=\dfrac{5}{7}\)

Do đó: CD=100cm

6 tháng 4 2022

a) Theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có : AH2 = BH . CH

=> CH = AH2/BH = \(\dfrac{162}{25}=10,24\)

BC = BH + CH = 25 + 10,24 = 35,24

- Theo hệ thức liên hệ giữa cạnh góc vuông và hình chéo , ta có :

AB2 = BH.BC

=> AB\(\sqrt{\left(BH.BC\right)}\) 

\(\sqrt{\left(25.35,24\right)}\)

\(\sqrt{881=29,68}\)

AC2 = HC.BC

=> AC = \(\sqrt{\left(CH.BC\right)}\)

\(\sqrt{\left(10,24.35,24\right)=}\sqrt{\left(360,9\right)=18,99}\)

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=15^2-12^2=81\)

hay BH=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay CH=16(cm)

16 tháng 10 2015

xét tam giác AHB và tam giác CAB có 

H = A = 90 

C chung 

=> AHB đồng dạng CAB ( g.g )

=>\(\frac{AB}{BC}=\frac{HB}{AB}\Leftrightarrow AB^2=HB.BC\Leftrightarrow AB=\sqrt{175.112}=140\)

\(AH=\sqrt{AB^2-BH^2}=\sqrt{140^2-112^2}=84\)

\(AC=\sqrt{BC^2-AB^2}=\sqrt{175^2-140^2}=105\)

VÌ AD là tia phân giác trogn tam giác ABC 

\(\frac{BD}{AB}=\frac{DC}{AC}\)

THEO T/C DÃY TĨ SỐ = NHAU

\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{175}{140+105}=\frac{5}{7}\)

\(\frac{BD}{AB}=\frac{5}{7}\Rightarrow BD=\frac{5.AB}{7}=\frac{5.140}{7}=100\)

HD = HB - BD = 112 -100 = 12 

\(AD=\sqrt{AH^2+HD^2}=\sqrt{12^2+84^2}=85\)

3 tháng 8 2016

AD= 60\(\sqrt{2}\)

a: BC=10cm

Xét ΔABC có BD là phân giác

nên AD/DC=AB/BC(1)

=>AD/AB=DC/BC

=>AD/6=DC/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{DC}{10}=\dfrac{AD+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:AD=3cm; DC=5cm

b: Xét ΔABH có BI là phân giác

nên IH/IA=BH/BA(2)

Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔABH∼ΔCBA

Suy ra: BH/BA=BA/BC(3)

Từ (1), (2) và (3) suy ra IH/IA=AD/DC

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: BC=10cm

AH=4,8cm

BH=3,6cm

c: DB/DC=AB/AC=6/8=3/4

30 tháng 3 2021

A B C H D

30 tháng 3 2021

a)

Xét \(\Delta ABC\) và \(\Delta HBA\) có:

           \(\widehat{B}:chung\)

      \(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)           \(\left(ĐPCM\right)\)

a: Xét ΔBAH có BI là phân giác

nên IA/BA=IH/BH

=>IA*BH=BA*IH

b: ΔACB vuông tạiA có AH vuông góc BC

nên BA^2=BH*BC

\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

CH=4^2/5=3,2cm

c: ΔBAC có BD là phân giác

nên DC/DA=BC/BA

=>DC/DA=BA/BH=AI/IH

=>DC*IH=DC*IA