K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2019

G B A P N M C

Ta lần lượt có:

  • Trong \(\Delta ABC\)vuông tại A, suy ra:

                   \(BC^2=AB^2+AC^2=12^2+16^2=400\Leftrightarrow BC=20cm.\)

Ta có:

\(GA=\frac{2}{3}AM=\frac{2}{3}.\frac{1}{2}BC=\frac{1}{3}.20=\frac{20}{3}cm.\)

  • Trong \(\Delta ABN\)vuông tại A, suy ra:

                \(BN^2=AB^2+AN^2=12^2+8^2=208\Leftrightarrow BN=\sqrt{208}\left(cm\right)\)

Khi đó:

\(GB=\frac{2}{3}BN=\frac{2}{3}\sqrt{208}=\frac{2\sqrt{208}}{3}=\frac{8}{3}\sqrt{13}\left(cm\right)\)

  • Trong \(\Delta ACP\)vuông tại A, suy ra:

                 \(CP^2=AC^2+AP^2=16^2+6^2=292\Leftrightarrow CP=\sqrt{292}\left(cm\right)\)

Khi đó:

\(GC=\frac{2}{3}CP=\frac{2}{3}\sqrt{292}=\frac{2\sqrt{292}}{3}=\frac{4}{3}\sqrt{73}cm.\)

Suy ra:

\(GA+GB+GC=\frac{20}{3}+\frac{8}{3}\sqrt{13}+\frac{4}{3}\sqrt{73}=\frac{4}{3}\left(5+2\sqrt{13}+\sqrt{73}\right)\left(cm\right)\)

30 tháng 3 2017

BC = \(\sqrt{8^2+6^2}\)= 10 cm

trung truyến AM = BC/2 = 5cm

AG = 2AM/3 = 10/3 cm.

trung tuyến BN = \(\sqrt{\frac{2BC^2+2BA^2-AC^2}{4}}\)\(\sqrt{\frac{2\left(10^2+6^2\right)-8^2}{4}}\)

BG = 2BN/3

trung tuyến CP = \(\sqrt{\frac{2BC^2+2AC^2-AB^2}{4}}\)\(\sqrt{\frac{2\left(10^2+8^2\right)-6^2}{4}}\)

BG = 2CP/3

27 tháng 4 2022

Gọi `AM` là trung tuyến của `ΔABC`

`=>AM` đồng thời là đường cao 

`=>ΔAMB;ΔAMC⊥M`

`AM` là trung tuyến nên 

`BM=MC=(BC)/2=4(cm)`

Áp dụng định lý py-ta-go ta tính được 

`AM^2=AB^2-BM^2=5^2-4^2=25-16=9(cm)`

`=>AM=3cm`

`G` trọng tâm 

`=>GA=2/3AM=2cm`

`GM=1/3AM=1cm`

Áp dụng định lý py-ta-go lần nữa ta tính đc

`GC^2=BG^2=BM^2+GM^2=4^2+1^2=16+1=17cm`

`=>GB=GC=`\(\sqrt{17cm}\)

Bài 1a) Cho 🔺ABC vuông tại A, biết AB=9cm; BC=15cm. Tính chu vi hình 🔺ABC. b) Cho🔺ABC cân tại A biết góc C=50°.Tính số đo góc A và BBài 2Cho 🔺ABC có AB=6 cm, AC=8cm, BC=10cma) CM: 🔺ABC vuông. b) Kẻ AH vuông góc với BC. Biết AH = 4,8 cm. Tính độ dài đoạn BH, CH. c) Lấy điểm I bất kì trên cạnh AH ( I không trùng với A và H). Cm: IC>IB. Bài 3Cho 🔺ABC vuông tại A, BD là phân giác của góc B. Vẽ Đi vuông góc...
Đọc tiếp

Bài 1

a) Cho 🔺ABC vuông tại A, biết AB=9cm; BC=15cm. Tính chu vi hình 🔺ABC. 

b) Cho🔺ABC cân tại A biết góc C=50°.Tính số đo góc A và B

Bài 2

Cho 🔺ABC có AB=6 cm, AC=8cm, BC=10cm

a) CM: 🔺ABC vuông. 

b) Kẻ AH vuông góc với BC. Biết AH = 4,8 cm. Tính độ dài đoạn BH, CH. 

c) Lấy điểm I bất kì trên cạnh AH ( I không trùng với A và H). Cm: IC>IB. 

Bài 3

Cho 🔺ABC vuông tại A, BD là phân giác của góc B. Vẽ Đi vuông góc với BC (I thuộc BC). Gọi K là giao điểm của hai đường thẳng Đi và AB. Cm rằng 

a) 🔺ABC=🔺IBD

b) BD vuông góc với AI

c) DK=DC

d) Cho AM=6cm; AC=8cm.Hãy tính IC?

Bài 4

Cho 🔺ABC cân tại A. Tia phân giác của góc Bác cắt BC tại D

a) CM: 🔺ADB=🔺ADC

b) CM BD =DC; AD vuông góc với BC

c) Kể DK vuông góc với AB tại K, DE vuông góc với AC tại E. CM: 🔺DKE cân tại D. 

CM: KE//BC

Bài 5 

Cho 🔺 ABC vuông tại A, biết AB= 3cm,AC=4cm.Tia phân giác gốc B cắt cạnh AC tại F. Qua F kể đường thẳng vuông góc với cạnh BC tại K

Bài 6

Cho 🔺MNP cân tại M. Kẻ MI vuông góc với NP (I thuộc NP) 

a) CM: IN=IP

b) Kẻ IH vuông góc với Mn (H thuộc MN) và IK vuông góc với MP( K thuộc MP). CM: 🔺IHK là🔺cân. 

c) CM: HK//NP

Bài 7

Cho 🔺ABC có góc B<góc C

a) So sánh độ dài các cạnh AB và AC

b) Gọi M là Trung điểm của BC. Trên tia đối của tia Mà lấy điểm D sao cho MD=MA. CM: góc CDA< góc CAD

Giải hết đống này hộ mình nha. Mình mãi mình KTTT rồi. Thanks all ❤️❤️❤️

 

 

 

0
28 tháng 8 2020

B C A M N G

Bài làm:

Kẻ trung tuyến AM, CN của tam giác ABC

Vì AB = AC = 5cm => Tam giác ABC cân tại A

=> AM đồng thời là đường cao của tam giác ABC

=> AM _|_ BC

Vì M là trung điểm của BC => BM = MC = BC/2 = 4cm

Áp dụng định lý Pytago ta tính được: \(AM^2=AB^2-BM^2=5^2-4^2=9cm\)

=> AM = 3cm

=> GA = 2/3AM = 2cm ; GM = 1cm

Áp dụng Pytago lần nữa ta tính được:

\(GC^2=BG^2=BM^2+GM^2=4^2+1^2=17\)

=> \(GB=GC=\sqrt{17}cm\)

3 tháng 3 2018

Hình tự vẽ sắp phải đi học 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{16^2+30^2}=34\left(cm\right)\)

Ta có \(\Delta ABC\perp A\)( gt )

\(MC=\sqrt{AC^2+AM^2}=\sqrt{30^2+8^2}=2\sqrt{241}\left(cm\right)\)

\(AM=\frac{1}{2}.BC=\frac{1}{2}.34=17\left(cm\right)\)

\(BD=\sqrt{AB^2+AD^2}=\sqrt{16^2+15^2}=\sqrt{481}\)

Khoảng cách từ G đến các đỉnh bằng 2/3 khoảng cách đường trung tuyến