Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) EM // AC => ACB = EMB ( đồng vị) (đpcm)
b) Xét t/g EBM và t/g DMC có:
EMB = DCM (câu a)
BM = CM (gt)
MBE = CMD ( đồng vị)
Do đó, t/g EBM = t/g DMC (g.c.g) (đpcm)
=> EM = CD (2 cạnh tương ứng)
c) Xét t/g EDM và t/g CMD có:
EM = CD (câu b)
EMD = CDM (so le trong)
DM là cạnh chung
Do đó, t/g EDM = t/g CMD (c.g.c) (đpcm)
=> ED = CM (2 cạnh tương ứng)
d) Có: ED = CM (câu c)
Lại có: CM = BM (gt)
=> ED = CM = BM
=> ED = 1/2.(CM + BM) = 1/2 BC (đpcm
a) EM // AC => ACB = EMB ( đồng vị) (đpcm)
b) Xét t/g EBM và t/g DMC có: EMB = DCM (câu a) BM = CM (gt) MBE = CMD ( đồng vị)
Do đó, t/g EBM = t/g DMC (g.c.g) (đpcm) => EM = CD (2 cạnh tương ứng)
c) Xét t/g EDM và t/g CMD có: EM = CD (câu b) EMD = CDM (so le trong) DM là cạnh chung Do đó, t/g EDM = t/g CMD (c.g.c) (đpcm) => ED = CM (2 cạnh tương ứng)
d) Có: ED = CM (câu c) Lại có: CM = BM (gt) => ED = CM = BM => ED = 1/2.(CM + BM) = 1/2 BC (đpcm)
a: Vì ME//AC
nên góc ACB=góc EMB
b: Xét ΔEBM và ΔDMC có
EB=DM
BM=MC
EM=DC
Do đó: ΔEBM=ΔDMC
c: Xét ΔEDM và ΔCMD có
ED=CM
MD chung
EM=CD
Do đó: ΔEDM=ΔCMD
d: Xét ΔABC co
M là trung điểm của BC
MD//AB
Do đo: D là trung điểm của AC
XétΔABC có
M là trung điểm của BC
ME//AC
Do đo: E là trung điểm của AB
Xét ΔABC có AE/AB=AD/AC
nên ED//BC và ED=1/2BC
a) EM // AC => ACB = EMB ( đồng vị) (đpcm)
b) Xét t/g EBM và t/g DMC có:
EMB = DCM (câu a)
BM = CM (gt)
MBE = CMD ( đồng vị)
Do đó, t/g EBM = t/g DMC (g.c.g) (đpcm)
=> EM = CD (2 cạnh tương ứng)
c) Xét t/g EDM và t/g CMD có:
EM = CD (câu b)
EMD = CDM (so le trong)
DM là cạnh chung
Do đó, t/g EDM = t/g CMD (c.g.c) (đpcm)
=> ED = CM (2 cạnh tương ứng)
d) Có: ED = CM (câu c)
Lại có: CM = BM (gt)
=> ED = CM = BM
=> ED = 1/2.(CM + BM) = 1/2 BC (đpcm)
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
b: Xét ΔADM vuông tại D và ΔAEM vuông tại E có
AM chung
góc DAM=góc EAM
=>ΔADM=ΔAEM
=>MD=ME
=>ΔMED cân tại M
c: Xét ΔCAB có
M là trung điểm của CB
MF//AB
=>F là trung điểm của AC
a) Ta có: ME//AC(gt)
nên \(\widehat{BME}=\widehat{BCA}\)(hai góc đồng vị)(đpcm)
d) Xét ΔABC có
M là trung điểm của BC(gt)
ME//AC(gt)
Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
MD//AB(gt)
Do đó: D là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
Xét ΔABC có
E là trung điểm của AB(cmt)
D là trung điểm của AC(cmt)
Do đó: ED là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
nên ED//BC và \(ED=\dfrac{1}{2}\cdot BC\)(Định lí 2 về đường trung bình của tam giác)