K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)

\(P=\dfrac{4a+6b+2017c}{4a-6b+2017c}=\dfrac{4a+6a+2017a}{4a-6a+2017a}=\dfrac{2027a}{2015a}=\dfrac{2027}{2015}\)

30 tháng 9 2021

Tham khảo:

https://olm.vn/hoi-dap/detail/248147135218.html

22 tháng 3 2018

Nhầm, Tính giá trị nha

26 tháng 10 2020

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=k\Rightarrow k^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{a}=1\Rightarrow k=1\Rightarrow a=b=c\Rightarrow...\)

23 tháng 3 2020

bài này nói lại 1 lần k đến lớp 9 tầm lớp 7 nhé!

vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

áp dụng tc dãy tỉ số = nhau

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

=> a=b=c

thay b=a ; c=a 

=>bt P= \(\frac{4a+6a+2017a}{4a-6a-2017a}\)

đến đây tự làm típ!

NV
20 tháng 12 2020

Chắc là bạn ghi nhầm mẫu số cuối cùng

\(\dfrac{1+b}{1+4a^2}=1+b-\dfrac{4a^2\left(1+b\right)}{1+4a^2}\ge1+b-\dfrac{4a^2\left(1+b\right)}{4a}=1+b-a\left(1+b\right)\)

Tương tự: \(\dfrac{1+c}{1+4b^2}\ge1+c-b\left(1+c\right)\) ; \(\dfrac{1+a}{1+4c^2}\ge1+a-c\left(1+a\right)\)

Cộng vế với vế:

\(P\ge3+a+b+c-\left(a+b+c\right)-\left(ab+bc+ca\right)\)

\(P\ge3-\left(ab+bc+ca\right)\ge3-\dfrac{1}{3}\left(a+b+c\right)^2=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

11 tháng 1 2021

Đặt \(\dfrac{b}{a}=x;\dfrac{c}{b}=y\).

Ta có: \(P=\dfrac{1}{\left(\dfrac{a+b}{a}\right)^2}+\dfrac{1}{\left(\dfrac{b+c}{b}\right)^2}+\dfrac{b}{a}.\dfrac{c}{b}.\dfrac{1}{4}\)

\(P=\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{\left(y+1\right)^2}+\dfrac{xy}{4}\).

Ta có bđt quen thuộc: \(\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{\left(y+1\right)^2}\ge\dfrac{1}{xy+1}\) (bạn xem cm ở đây).

Do đó \(P\ge\dfrac{1}{xy+1}+\dfrac{xy+1}{4}-\dfrac{1}{4}\ge1-\dfrac{1}{4}=\dfrac{3}{4}\).

Đẳng thức xảy ra khi x = y = 1 tức a = b = c. 

Vậy...

NV
11 tháng 1 2021

BĐT phụ kia có 1 cách chứng minh rất hay mà không cần đến biến đổi tương đương với mũ to:

\(\dfrac{1}{\left(1.1+\sqrt{xy}.\sqrt{\dfrac{x}{y}}\right)^2}+\dfrac{1}{\left(1.1+\sqrt{xy}.\sqrt{\dfrac{y}{x}}\right)^2}\ge\dfrac{1}{\left(1+xy\right)\left(1+\dfrac{x}{y}\right)}+\dfrac{1}{\left(1+xy\right)\left(1+\dfrac{y}{x}\right)}=\dfrac{1}{1+xy}\)

2 tháng 12 2021

Câu 1

\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)

Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)

Câu 2:

\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)

Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24

NV
9 tháng 4 2021

\(ab+bc+ca=3\Rightarrow\left\{{}\begin{matrix}a+b+c\ge3\\abc\le1\end{matrix}\right.\)

Ta sẽ chứng minh \(P\le\dfrac{3}{8}\)

\(P\le\dfrac{a}{6a+2}+\dfrac{b}{6b+2}+\dfrac{c}{6c+2}\) nên chỉ cần chứng minh: \(\dfrac{a}{3a+1}+\dfrac{b}{3b+1}+\dfrac{c}{3c+1}\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{3a+1}+\dfrac{1}{3b+1}+\dfrac{1}{3c+1}\ge\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{\left(3a+1\right)\left(3b+1\right)+\left(3b+1\right)\left(3c+1\right)+\left(3c+1\right)\left(3a+1\right)}{\left(3a+1\right)\left(3b+1\right)\left(3c+1\right)}\ge\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{6\left(a+b+c\right)+30}{27abc+3\left(a+b+c\right)+28}\ge\dfrac{3}{4}\)

\(\Rightarrow\dfrac{6\left(a+b+c\right)+30}{27+3\left(a+b+c\right)+28}\ge\dfrac{3}{4}\)

\(\Leftrightarrow24\left(a+b+c\right)+120\ge165+9\left(a+b+c\right)\)

\(\Leftrightarrow a+b+c\ge3\) (đúng)

5 tháng 6 2021

\(4.\left(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}-\dfrac{3}{2}\right)+\dfrac{ab^2+bc^2+ca^2+abc}{a^2b+b^2c+c^2a+abc}-1\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2b+b^2c+c^2a+abc}-2.\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)-2\left(a^2b+b^2c+c^2a+abc\right)\right]}{\left(a^2b+b^2c+c^2a+abc\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2}{\left(a^2b+b^2c+c^2a+abc\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Bất đẳng thức hiển nhiên đúng

Vậy ta có điều phải chúng minh. Dấu hằng đẳng thức xảy ra khi  \(a=b=c\)

-Chúc bạn học tốt-

Bạn giải thích hộ mình từ dòng 1 xuống dòng 2 đc ko ạ ?

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)