Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : abc < ab + bc + ac
\(\Leftrightarrow1<\frac{1}{a}<\frac{1}{b}<\frac{1}{c}\) (*)
Chỉ có 6 bộ 3 số nguyên tố khác nhau thỏa mãn (*).
Đó là (2;3;5); (2;5;3); (3;2;5); (3;5;2); (5;2;3); (5;3;2)
Trả lời : 6
Giả sử $a\leq b\leq c\Rightarrow 2\leq c\leq 4$
$P=a^2+b^2+ab+c(a+b+c)=(a+b)^2-ab+6c\leq (6-c)^2+6c=c^2-6c+36=(c-3)^2+27$
Vì $2\leq c\leq 4$ nên $-1\leq c-3\leq 1\Rightarrow (c-3)^2\leq 1$
Vậy MaxP=28 khi a,b,c là hoán vị của 0,2,4
1.Tính góc A=180-75=105 độ
suy ra góc C=180- góc A-góc B=180-50-105=....
câu 1 góc A=180-75=105 độ
lại có tổng 3 góc trong 1 tam giác =180 độ nên goc C=180-50-105=25 do
câu 2 có ý=x-3 rồi thế vào phương trình x2 -x*(x-3)+5=-13 nen suy ra x=6
Ta có:
\(a+b=c+d\)
\(\Rightarrow d=a+b-c\)
Vì \(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)
Mà \(\Rightarrow d=a+b-c\) nên ta có:
\(ab-cd=1\)
\(\Rightarrow ab-c\left(a+b-c\right)=1\)
\(\Rightarrow ab-ac-bc+c^2=1\)
\(\Rightarrow a.\left(b-c\right)-c.\left(b-c\right)=1\)
\(\Rightarrow\left(a-c\right)\left(b-c\right)=1\)
Vì \(a,b,c\in Z\) nên \(\left(a-c\right)\left(b-c\right)=1.1\) hoặc \(\left(a-c\right)\left(b-c\right)=\left(-1\right)\left(-1\right)\)
Do đó \(a-c=b-c\)
\(\Rightarrow a=b\)
Vậy a=b.
vào đây tham khảo nha http://olm.vn/hoi-dap/question/59155.html
Ta có:
\(ab-ac+bc-c^2=a.\left(b-c\right)+c.\left(b-c\right)=\left(a+c\right)\left(b-c\right)=-1\)
Tích trên là âm nên a+c và b-c trái dấu
Ư(1)={-1;1}
Như vậy các số a+c và b-c là 2 số đối nhau
TH1: Giả sử a=b => b+c= -(b-c)
=> b+c=-b+c
=> b= -b
=> b=0
=> a+c=0-c=-c
=> a= -c+c=0
Như vậy a=b và a cũng là số đối của b
TH2: a khác b
Có: a+c và b-c, một trong 2 là 1 và một trong 2 là -1
=> Tổng của a+c và b-c là 1+(-1)=0
=> a+b=0
a khác b nên a, b là 2 số đối nhau.
Vậy a, b là 2 số đối nhau.