K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

Do: \(a^2+b^2+c^2=1\text{ nen }a^2\le1,b^2\le1,c^2\le1\)

\(\Rightarrow a\ge-1;b\ge-1;c\ge-1\)

\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)

\(\Rightarrow1+a+b+c+ab+bc+ca+abc\ge0\)

Cần C/m:

\(1+a+b+c+ab+bc+ca\ge0\)

Ta có: 

\(1+a+b+c+ab+bc+ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ca+a+b+c\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2+2\left(a+b+c\right)+2ab+2bc+2ca+abc\ge0\)

\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)

\(\Leftrightarrow\left(a+b+c+1\right)^2\ge0\left(\text{luon dung}\right)\)

=> ĐPCM

14 tháng 3 2018

Bấm vào câu hỏi tương tự 

hoặc lên Học24h 

8 tháng 3 2019

Ta có : \(a^2+b^2+c^2=1\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le1\)

\(\Rightarrow-1\le a;b;c\le1\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge0\)

\(\Rightarrow a+b+c+ab+ac+bc+abc+1\ge0\left(1\right)\)

Lại có : \(\left(a+b+c+1\right)^2\ge0\)

\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac+a+b+c\right)+1\ge0\)

\(\Leftrightarrow2\left(ab+bc+ac+a+b+c+1\right)\ge0\)

\(\Leftrightarrow ab+bc+ac+a+b+c+1\ge0\left(2\right)\)

Từ ( 1 ) ; ( 2 ) \(\Rightarrow abc+2\left(ab+bc+ac+a+b+c+1\right)\ge0\left(đpcm\right)\)

Ta có : \(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab\)

\(\Rightarrow\dfrac{1}{a^2-ab+b^2}\le\dfrac{1}{ab}=\dfrac{abc}{ab}=c\) ( do $abc=1$ )

Tương tự ta có :

\(\dfrac{1}{b^2-bc+c^2}\le a\)

\(\dfrac{1}{c^2-ab+a^2}\le b\)

Cộng vế với vế các BĐT trên có :

\(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)

Dấu "=" xảy ra khi $a=b=c$

NV
10 tháng 3 2021

\(VT=\dfrac{1}{a^2+b^2-ab}+\dfrac{1}{b^2+c^2-bc}+\dfrac{1}{c^2+a^2-ca}\)

\(VT\le\dfrac{1}{2ab-ab}+\dfrac{1}{2bc-bc}+\dfrac{1}{2ca-ca}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a+b+c}{abc}=a+b+c\)

Dấu "=" xảy ra khi \(a=b=c=1\)

3 tháng 4 2018

Ta có a^2+b^2+c^2=1

ma a^2 ,b^2,c^2>=0

=> a,b,c>-1

=> (a+1)(b+1)(c+1)>=0

=> 1+ab+bc+ac+a+b+c+abc>=0(1)

 lai co (a+b+c+1)^2=a^2+b^2+c^2+2a+2b+2c+2ab+2bc+2ac+1

                               =2( 1+ab+bc+ac+a+b+c)>=0(2)

tu 1 va 2 => dpcm

17 tháng 3 2019

Câu này mik trả lời rồi nhé bạn , có trong câu hỏi tương tự nha

21 tháng 9 2017

Mk chiu mk mới lớp 6 thui huhu 

Nhưng chúc bn hok giỏi