K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

từ giả thiết, ta có \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

ta có \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\left(vi:\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\right)\) (ĐPCM)

^_^

28 tháng 10 2020

Tam giác ABC có ba cạnh a,b,c và có chu vi bằng 1

=> \(a+b+c=1\)

=> \(\hept{\begin{cases}b+c=1-a\\a+c=1-b\\a+b=1-c\end{cases}}\)

Do đó ta viết lại đề bài thành \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{3}{2}\)

Ta sẽ chứng minh \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy, ta có :

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(=\left(\frac{a}{b+c}+\frac{b+c}{b+c}\right)+\left(\frac{b}{a+c}+\frac{a+c}{a+c}\right)+\left(\frac{c}{a+b}+\frac{a+b}{a+b}\right)-3\)

\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)

\(=\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(a+c\right)\right]\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)

\(\ge\frac{1}{2}\cdot3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\cdot\frac{3}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}}-3\)( bất đẳng thức Cauchy )

\(=\frac{1}{2}\cdot9-3=\frac{3}{2}\)

Đẳng thức xảy ra <=> a = b = c

=> Tam giác ABC đều ( đpcm )

28 tháng 10 2020

Đặt \(\hept{\begin{cases}b+c=x\\a+c=y\\a+b=z\end{cases}}\)Với (x,y,z>0) và \(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)

Ta có \(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

           \(=\frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{y}{z}\right)-\frac{3}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)

Dấu ''=''  xảy ra khi và chỉ khi \(x=y=z\)

Với x = y = z thì \(a=b=c\)

=> \(\Delta ABC\) đều 

11 tháng 1 2018

Bạn xem lời giải ở đường link sau nhé:

Câu hỏi của hyun mau - Toán lớp 8 - Học toán với OnlineMath

11 tháng 1 2018

thank

7 tháng 12 2017

Ta có:\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Rightarrow2+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\Rightarrow\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=2\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

\(\Rightarrow\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}=1\Rightarrow\frac{a+b+c}{abc}=1\Rightarrow a+b+c=abc\)

\(\Rightarrowđpcm\)

7 tháng 12 2017

Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{2}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Rightarrow2^2=2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Leftrightarrow2=.2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)

\(\Leftrightarrow\frac{a}{abc}+\frac{a}{abc}+\frac{b}{abc}=\frac{abc}{abc}\)

\(\Leftrightarrow a+b+c=abc\)

\(\RightarrowĐPCM\)

29 tháng 3 2016

bài này chứng minh bài toán phụ, khá là phức tạp, trình bày ra chắc chết quá

bài này mình thấy tren mạng đăng lên đó, có kết quả nhưng ko copy được

18 tháng 12 2019

hỏi cái lồn . ngu như bíp

13 tháng 10 2016

Ta có 

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a^2bc+ab^2c+abc^2}{a^2b^2c^2}=\frac{abc\left(a+b+c\right)}{a^2b^2c^2}=0\)

Ta lại có

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

Từ đó

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

16 tháng 10 2020

Từ a3 + b3 + c3 = 3abc

<=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0

<=> (a + b)3 + c3 - 3ab(a + b) - 3abc = 0

<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2) - 3ab(a + b + c) = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\left(loại\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> a = b = c

=> tam giác đó là tam giác đều

b) Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

CM đúng (tự cm tđ)

Ta có: \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}=9\)(vì x + y + z = 1)

Dấu "=" xảy ra <=> x = y = z = 1/3

16 tháng 10 2020

a) Vì a, b, c là độ dài ba cạnh của một tam giác => a, b, c > 0

Ta có : a3 + b3 + c3 = 3abc

<=> a3 + b3 + c3 - 3abc = 0

<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

<=> ( a + b + c )( a2 + b2 + c2 + 2ab - ac - bc ) - 3ab( a + b + c ) = 0

<=> ( a + b + c )( a2 + b2 + c2 - ab - ac - bc ) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

Dễ thấy không thể xảy ra trường hợp a + b + c = 0 vì a, b, c > 0 

Xét TH còn lại ta có :

a2 + b2 + c2 - ab - ac - bc = 0

<=> 2(a2 + b2 + c2 - ab - ac - bc) = 2.0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ac + a2 ) = 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0 (*)

Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(c-a\right)^2\end{cases}}\ge0\forall a,b,c\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

=> Tam giác đó là tam giác đều ( đpcm )