Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\)
\(\Rightarrow a=2003k;b=2004k;c=2005k\)
Thay a = 2003k, b = 2004k, c = 2005k vào 4(a - b)(b - c), ta có:
4(2003k - 2004k)(2004k - 2005k)
= 4(-k)(-k)
= 4k2
Thay a = 2003k, b = 2004k, c = 2005k vào (c - a)2, ta có:
(2005k - 2003k)2 = (2k)2 = 4k2
Vì 4k2 = 4k2 nên 4(a - b)(b - c) = (c - a)2
Vậy với \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\)thì \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
a) Ta có:
A = 1 + 2 + 22 + 23 + ... + 2200
=> 2A = 2(1 + 2 + 22 + 23 + ... + 2200)
=> 2A = 2 + 22 + 23 + 24 + ... + 2201
=> 2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)
=> A = 2201 - 1
=> A + 1 = 2201 - 1 + 1
=> A + 1 = 2201
Vậy A + 1 = 2201
b) Ta có:
B = 3 + 32 + 33 + ... + 32005
=> 3B = 3(3 + 32 + 33 + ... + 32005)
=> 3B = 32 + 33 + 34 + ... + 32006
=> 3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + .. + 32005)
=> 2B = 32006 - 3
c) Ta có:
C = 4 + 22 + 23 + ... + 22005
Đặt M = 22 + 23 + ... + 22005, ta có:
2M = 2(22 + 23 + ... + 22005)
=> 2M = 23 + 24 + ... + 22006
=> 2M - M = (23 + 24 + ... + 22006) - (22 + 23 + ... + 22005)
=> M = 22006 - 22
=> M = 22006 - 4
Thay M = 22006 - 4 vào C, ta có:
C = 4 + (22006 - 4) = 22006
=> 2C = 2 . 22006 = 22007
Vậy 2C là lũy thừa của 2.
a) B = 3 + 32 + ... + 32005
3B = 32 + 33 + ... + 32006
3B - B = 32006 - 3
2B = 32006 - 3
Theo bài ra : 2B + 3 = 32006 - 3 + 3 = 32006
a) A = 22007-1 => A + 1 = 22007
b) Do 2B = 3B - B = 32006- 3 => 2B + 3 = 32006
c) C = 4 + 22 + 23+...+22005 = 22 + 23 + ...+ 22005 + 4
2C - C = 22006 - 22 + 4 =22006 - 22 + 22 = 22006
Bài 1:19.C=\(\frac{19^{209}+19}{19^{209}+1}\)=\(\frac{19^{209}+1+18}{19^{209}+1}\)=\(\frac{19^{209}+1}{19^{209}+1}\)+\(\frac{18}{19^{209}+1}\)=1+\(\frac{18}{19^{209}+1}\)19D=\(\frac{19^{210}+19}{19^{210}+1}\)=\(\frac{19^{210}+1+18}{19^{210}+1}\)=\(\frac{19^{210}+1}{19^{210}+1}\)+\(\frac{18}{19^{210}+1}\)=1+\(\frac{18}{19^{210}+1}\).Vì \(\frac{18}{19^{209}+1}\)>\(\frac{18}{19^{210}+1}\)nên 19A>19B\(\Rightarrow\)A>B
19D=\(\frac{\left(19^{209}+1\right).19}{19^{210}+1}=\frac{19^{210}+19}{19^{210}+1}=\frac{\left(19^{210}+1\right)+18}{19^{210}+1}=\frac{19^{210}+1}{19^{210}+1}+\frac{18}{19^{210}+1}=1+\frac{18}{19^{210}+1}\)
Vì 19C>19D nên C>D
a/
$A-3=\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}-3$
$=(1-\frac{1}{2004})+(1-\frac{1}{2005})+(1+\frac{2}{2003})-3$
$=\frac{2}{2003}-\frac{1}{2004}-\frac{1}{2005}$
$=(\frac{1}{2003}-\frac{1}{2004})+(\frac{1}{2003}-\frac{1}{2005})$
$>0+0=0$
$\Rightarrow A>3$
b/
$B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}$
$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}$
$=1-\frac{1}{2015}<1$