K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2015

Xét vế trái a^3+b^3+c^3= [(a+b)(a^2-ab+b^2)]+c^3 (1) 
Giả thiết a+b+c=0 => c= - (a+b) => c^3= -(a+b)^3
Thay vào (1) ta có [(a+b)(a^2-ab+b^2)] - (a+b)^3 
= (a+b)[a^2-ab+b^2-(a+b)^2] 
= (a+b)[a^2-ab+b^2-(a^2+2ab+b^2)] 
= (a+b)(a^2-ab+b^2-a^2-2ab-b^2) 
= (a+b).(-3ab) 
= -(a+b).3ab 
= 3abc 

15 tháng 8 2018

đặt = k

20 tháng 10 2019

a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

=> a=b=c

20 tháng 10 2019

b, \(0=\left(a+b+c\right)^3=a^3+b^3+c^3+6abc+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3ca^2\)

\(=a^3+b^3+c^3+6abc+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)

\(=a^3+b^3+c^3+6abc-3abc-3abc-3abc\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

15 tháng 1 2021

a3 + b3 + c3 = 3abc

⇒ a3 + b3 + c3 - 3abc = 0

⇒ ( a3 + b3 ) + c3 - 3abc = 0

⇒ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

⇒ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

⇒ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0

⇒ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0

⇒ \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)

+) a2 + b2 + c2 - ab - bc - ac = 0

⇒ 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0

⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0

⇒ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0

⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0

VT ≥ 0 ∀ a,b,c . Dấu "=" xảy ra khi a = b = c

⇒ a + b + c = 0 hoặc a = b = c ( đpcm )

NV
20 tháng 10 2019

a/

\(a^2+b^2+c^2+29ab+bc+ca=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)

b/ \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b\right)\)

\(=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)

c/ Không, vì \(a=b=c\ne\) thì \(a^3+b^3+c^3=3a^3=3abc\) vẫn đúng

7 tháng 7 2021

Ta có a3 + b3 + c3 = 3abc

<=> (a + b)3  - 3ab(a + b) + c3 = 3abc

<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0

<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab) = 0 

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\left(\text{tmđk}\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

Khi a2 + b2 + c2 - ab - ac - bc = 0 

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0 

<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0 

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(\text{loại}\right)\)

Vậy a + b + c = 0

26 tháng 10 2014

Ông tự ra thì ông tự giải.Đừng giải nữa anh chị ơi
 

28 tháng 10 2018

1. \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(abc\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

2. \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

3.Còn có a + b + c = 0 nữa mà bn.

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)

+ \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\ \left(c-a\right)^2=0\end{matrix}\right.\)

\(\Rightarrow a=b=c\)

28 tháng 10 2018

làm đúng mà ko hiểu

13 tháng 8 2019

Câu hỏi của trần thị bảo trân - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi trên là c/m \(a^3+b^3+c^3=3abc\)

Vậy thì suy ra được \(a^3+b^3+c^3⋮3abc\)

Mấy câu còn lại tương tự