Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Đặt c + d = x
Ta có: \(a+b+c+d=0\Rightarrow a+b+x=0\Rightarrow a^3+b^3+c^3+d^3=3abx\)
\(\Rightarrow a^3+b^3+c^3+d^3+3cd\left(c+d\right)=3ab\left(c+d\right)\)
\(\Rightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)=3\left(ab-cd\right)\left(c+d\right)\)
Câu 4:
\(a^{2016}+b^{2016}+c^{2016}=a^{1008}b^{1008}+b^{1008}c^{1008}+c^{1008}+a^{1008}\)
\(\Rightarrow2a^{2016}+2b^{2016}+2c^{2016}-2a^{1008}b^{1008}-2b^{1008}c^{1008}-2c^{1008}a^{1008}=0\)
\(\Rightarrow\left(a^{1008}-b^{1008}\right)^2+\left(b^{1008}-c^{1008}\right)^2+\left(c^{1008}-a^{1008}\right)^2=0\)
\(\Rightarrow a^{1008}=b^{1008},b^{1008}=c^{1008},c^{1008}=a^{1008}\)
\(\Rightarrow a=b,b=c,c=a\) (vì a,b,c > 0 nên \(a\ne-b,b\ne-c,c\ne-a\) )
\(\Rightarrow a-b=0,b-c=0,a-c=0\)
Thay vào A ta tính được A = 0
Ta có: \(a^{2017}+b^{2017}\)= \(2a^{^{ }1018}.b^{1018}\)
⇔ (a2017 + b2017)2 = 4(ab)2018
Lại có: (a2017 + b2017)2 ≥ 4a2017.b2017
⇒ 4(ab)2016 ≥ 4a2017.b2017
⇒ ab2016 ≥ ab2017
⇒ ab ≤ 1
⇒ 1 - ab ≥ 0
⇒ 2018 - 2018ab ≥ 0
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)=-ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
TH1 : \(a+b=0\Leftrightarrow a=-b\)
\(M=\left(-b^{15}+b^{15}\right)\left(b^4+c^4\right)\left(c^{2016}+a^{2016}\right)\)
\(M=0\left(b^4+c^4\right)\left(c^{2016}+a^{2016}\right)=0\)
TH2 : \(b+c=0\Leftrightarrow b=-c\)
Đến đây tịt :) bác nào biết giải tiếp giúp Nghị Hồng Vân Anh
đề cho a,b trái dấu rồi nên có một trường hợp thôi nha Trần Thanh Phương, cảm ơn bạn
\(a^{2016}+b^{2016}+c^{2016}=a^{1008}b^{1008}+b^{1008}c^{1008}+c^{1008}a^{1008}\)
\(\Rightarrow2a^{2016}+2b^{2016}+2c^{2016}=2a^{1008}b^{1008}+2b^{1008}c^{1008}+2c^{1008}a^{1008}\)
\(\Rightarrow\left(a^{2016}-2a^{1008}b^{1008}+b^{1008}\right)+\left(b^{2016}-2b^{1008}c^{1008}+c^{1008}\right)\)\(+\left(c^{2016}-2c^{1008}a^{1008}+a^{2016}\right)=0\)
\(\Rightarrow\left(a^{1008}-b^{1008}\right)^2+\left(b^{1008}-c^{1008}\right)^2+\left(c^{1008}-a^{1008}\right)=0\)
Vì \(\hept{\begin{cases}\left(a^{1008}-b^{1008}\right)^2\ge0\\\left(b^{1008}-c^{1008}\right)^2\ge0\\\left(c^{1008}-a^{1008}\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(a^{1008}-b^{1008}\right)^2+\left(b^{1008}-c^{1008}\right)^2+\left(c^{1008}-a^{1008}\right)^2\ge0\)
Dấu " = " xảy ra: \(\Leftrightarrow\hept{\begin{cases}a^{1008}-b^{1008}=0\\b^{1008}-c^{1008}=0\\c^{1008}-a^{1008}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a^{1008}=b^{1008}\\b^{1008}=c^{1008}\\c^{1008}=a^{1008}\end{cases}\Leftrightarrow}a=b=c\)
Thay a=b=c vào A ta có: \(A=\left(a-a\right)^{15}+\left(a-a\right)^{2015}+\left(a-a\right)^{2016}=0\)