K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 6 2018

Lời giải:

Với $a=0$ thì pt trở thành: \(bx+c=0\)

\((c+a)^2< ab+bc-2ac\Leftrightarrow c^2< bc\Rightarrow c(c-b)< 0\Rightarrow 0< c< b\)

PT luôn có nghiệm \(x=\frac{-c}{b}\)

Với $a\neq 0$

Nếu \(ac<0\Rightarrow b^2-ac>0\Leftrightarrow \Delta>0\) nên pt \(ax^2+bx+c=0\) có nghiệm

Nếu \(ac>0, c>0\Rightarrow a>0\)

Ta có: \((c+a)^2< ab+bc-2ac< ab+bc\) do \(ac>0\)

\(\Leftrightarrow (c+a)^2< b(a+c)\)

\(a>0, c>0\Rightarrow a+c>0\), chia 2 vế cho $a+c$ thu được:

\(0< c+a< b\Rightarrow \Delta'=b^2-4ac>(c+a)^2-4ac=(a-c)^2\geq 0\)

Do đó pt \(ax^2+bx+c=0\) có nghiệm

13 tháng 6 2018

Ta có: \(\Delta=b^2-4ac\)

Lại có: \(\left(a+c\right)^2< ab+bc-2ac\)

\(\Rightarrow-2ac>b\left(a+c\right)+\left(a+c\right)^2\)

\(\Rightarrow\Delta=b^2-4ac>b^2+2b\left(a+c\right)+2\left(a+c\right)^2\)

\(\Rightarrow\Delta>\left(a+b+c\right)^2+\left(a+c\right)^2>0\)

Suy ra phương trình \(ax^2+bx+c\) luôn có nghiệm

4 tháng 9 2016

Ta có (a + c)2 < ab + bc - 2ac

<=> ab + bc - a2 - c2 - 4ac > 0 (1)

Ta lại có a2 + b+ c2 \(\ge\)ab + bc +ca > ab + bc (2)

Từ (1) và (2) => b- 4ac > 0

Vậy PT luôn có nghiệm

AH
Akai Haruma
Giáo viên
6 tháng 5 2020

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} x=ay+a\\ ax+y=1\end{matrix}\right.\)

\(\Rightarrow a(ay+a)+y=1\)

\(\Leftrightarrow y(a^2+1)=1-a^2(*)\)

Ta thấy $a^2+1\neq 0$ với mọi $a$ nên PT $(*)$ luôn có nghiệm duy nhất $y=\frac{1-a^2}{a^2+1}$

$\Rightarrow x=ay+a=\frac{2a}{a^2+1}$

Vậy HPT luôn có nghiệm duy nhất $(x,y)=(\frac{2a}{a^2+1}; \frac{1-a^2}{a^2+1})$ với mọi $a$

b)

Để $x,y>0$ \(\Leftrightarrow \left\{\begin{matrix} \frac{2a}{a^2+1}>0\\ \frac{1-a^2}{a^1+1}>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2a>0\\ 1-a^2>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a>0\\ 1> a>-1\end{matrix}\right.\Leftrightarrow 1>a>0\)

27 tháng 3 2020

Hỏi đáp ToánHỏi đáp Toán

18 tháng 12 2022

=>x=2-ay và a*(2-ay)-2y=1

=>x=2-ay và 2a-a^2y-2y=1

=>x=2-ay và y(-a^2-2)=1-2a

=>\(\left\{{}\begin{matrix}x=2-ay\\y=\dfrac{2a-1}{a^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{2a^2-a}{a^2+2}=\dfrac{2a^2+4-2a^2+a}{a^2+2}=\dfrac{a+4}{a^2+2}\\y=\dfrac{2a-1}{a^2+2}\end{matrix}\right.\)

Để x>0 và y<0 thì a+4>0 và 2a-1<0

=>a>-4 và a<1/2

NV
11 tháng 2 2020

Mới nghĩ ra 3 câu:

a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)

\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)

\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)

c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)

\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)

Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)

\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)

\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)

d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

11 tháng 2 2020

Akai Haruma, Nguyễn Ngọc Lộc , @tth_new, @Băng Băng 2k6, @Trần Thanh Phương, @Nguyễn Việt Lâm

Mn giúp e vs ạ! Thanks!

AH
Akai Haruma
Giáo viên
20 tháng 1

Lời giải:

a.

 

Từ $x+y=2\Rightarrow y=2-x$. Thay vào PT(2):
$(m+1)x+m(2-x)=7$

$\Leftrightarrow x+2m=7$

$\Leftrightarrow x=7-2m$

$y=2-x=2-(7-2m)=2m-5$

Vậy hpt có nghiệm $(x,y)=(7-2m, 2m-5)(*)$

Nếu $x,y$ có 1 số $\geq 0$, một số $\leq 0$ thì $xy\leq 0< 1$

Nếu $x,y$ cùng $\geq 0$ thì áp dụng BĐT Cô-si:

$2=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 1$

Vậy tóm lại $xy\leq 1(**)$
Từ $(*); (**)$ suy ra với mọi $m$ thì hpt luôn có nghiệm $x,y$ thỏa mãn $xy\leq 1$

b.

$xy>0$

$\Leftrightarrow (7-2m)(2m-5)>0$

$\Leftrightarrow 7> 2m> 5$

$\Leftrightarrow \frac{7}{2}> m> \frac{5}{2}$

Do $m$ nguyên nên $m=3$

Thử lại thấy đúng.