K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔBMG và ΔCME có

MB=MC

góc BMG=góc CME

MG=ME

=>ΔBMG=ΔCME
b: Xet tứ giác BGCE co

M là trung điểm chung của BC và GE

=>BGCE là hình bình hành

=>BG//CE

c: Xét ΔABE co

AI,BG là trung tuyến

AI cắt BG tại F

=>F là trọng tâm

=>E,F,N thẳng hàng

21 tháng 9 2023

Tham khảo:

a) Xét tam giác BGM và tam giác CEM có :

\(\widehat {GMB} = \widehat {EMC}\)(2 góc đối đỉnh)

GM = ME (do G đối xứng E qua M)

MB = MC (do M là trung điểm của BC)

\( \Rightarrow \Delta BGM = \Delta CEM(c - g - c)\)

\( \Rightarrow \widehat {GBM} = \widehat {MCE}\)(2 góc tương ứng bằng nhau)

Mà 2 góc trên ở vị trí so le trong nên BG⫽CE

b) Vì I là trung điểm BE nên AI sẽ là trung tuyến của tam giác ABE

Và BG cũng là trung tuyến của tam giác ABE do G là trung điểm AE

Vì BG cắt AI tại F nên F sẽ là trọng tâm của tam giác ABE

\(\, \Rightarrow AF = \dfrac{2}{3}AI\)(định lí về trọng tâm tam giác)

Mà AI = AF + FI \( \Rightarrow \) FI = AI – AF

\( \Rightarrow FI = AI - \dfrac{2}{3}AI = \dfrac{1}{3}AI\)

\( \Rightarrow 2FI = AF = \dfrac{2}{3}AI\)

\( \Rightarrow \) AF = 2 FI

loading...  loading...  

9 tháng 8 2023

sao dám cằm điện thoại lên lớp  àhiha

a: Xét ΔAMB và ΔDMC có

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔAMB=ΔDMC

Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

b: Xét ΔCBD có 

M là trung điểm của BC

F là trung điểm của DC

Do đó: MF là đường trung bình

=>MF//BD

=>MF//AC

hay MK//AC
Xét ΔBAC có 

M là trung điểm của BC

MK//AC
DO đó: K là trung điểm của BA

Xét tứ giác BKCF có

BK//CF

BK=CF

Do đó: BKCF là hình bình hành

Suy ra: Hai đường chéo BC và KF cắt nhau tại trung điểm của mỗi đường

hay M là trung điểm của KF

1: Xét ΔBMG và ΔCMD có

BM=CM(AM là đường trung tuyến ứng với cạnh BC của ΔABC)

\(\widehat{BMG}=\widehat{CMD}\)(hai góc đối đỉnh)

GM=DM(M là trung điểm của GD)

Do đó: ΔBMG=ΔCMD(c-g-c)

\(\widehat{GBM}=\widehat{DCM}\)(hai góc tương ứng)

\(\widehat{GBM}\)\(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên BG//DC(dấu hiệu nhận biết hai đường thẳng song song)

2: Xét ΔABC có

AM là đường trung tuyến ứng với cạnh BC(gt)

BN là đường trung tuyến ứng với cạnh AC(gt)

AM\(\cap\)BN={G}

Do đó: G là trọng tâm của ΔABC(định lí ba đường trung tuyến của tam giác)

\(AG=\frac{2}{3}AM\)(tính chất)(1)

Ta có: AG+GM=AM(G nằm giữa A và M)

hay \(GM=AM-AG=AM-\frac{2}{3}AM=\frac{1}{3}AM\)

mà GD=2GM(M là trung điểm của GD)

nên \(GD=2\cdot\frac{1}{3}AM=\frac{2}{3}AM\)(2)

Từ (1) và (2) suy ra AG=GD

mà A,G,D thẳng hàng(A,G,M,D thẳng hàng)

nên G là trung điểm của AD

Xét ΔADC có

G là trung điểm của AD(cmt)

N là trung điểm của AC(BN là đường trung tuyến ứng với cạnh AC của ΔABC)

Do đó: GN là đường trung bình của ΔADC(định nghĩa đường trung bình của tam giác)

⇒GN//DC và \(GN=\frac{DC}{2}\)(định lí 2 về đường trung bình của tam giác)(3)

Ta có: G là trọng tâm của ΔABC(cmt)

\(GN=\frac{1}{3}BN\)(tính chất)(4)

Từ (3) và (4) suy ra \(\frac{DC}{2}=\frac{1}{3}BN\)

\(\frac{DC}{2}=\frac{BN}{3}\)

hay \(3\cdot CD=2\cdot BN\)(ddpcm)

Cho mình xin phép trình bài theo kiểu lớp 8 ạ!

a) Xét ∆ABC vuông tại A có

  BC=CA2+AB2(theo định lí pythagore)

<=>\(BC=\sqrt{AC^2+AB^2}\)

\(\Rightarrow BC=\sqrt{28^2+21^2}\)

\(\Rightarrow BC=35\)

Do AM là trung tuyến với cạnh BC

nên AM=BC:2

\(\Rightarrow AM=\dfrac{35}{2}\)

Mà G là trọng tâm của ∆ABC nên \(AG=\dfrac{2}{3}AM\Leftrightarrow AG=\dfrac{35}{3}\)

 

19 tháng 7 2023

b, c đâu bạn

 

a: Xét ΔMBA và ΔMCE có

MB=MC

góc BMA=góc CME

MA=ME

=>ΔMBA=ΔMCE

b: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

=>ABEC là hình bình hành

=>BE//AC