K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

a/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)

\(=\sqrt{\frac{\left(b+c\right)^2.b^2+\left(b+c\right)^2.c^2+b^2.c^2}{\left(b+c\right)^2.b^2.c^2}}\)

\(=\sqrt{\frac{\left(b^2+bc+c^2\right)^2}{\left(b+c\right)^2.b^2.c^2}}\)

\(=\left|\dfrac{b^2+bc+c^2}{\left(b+c\right).b.c}\right|\)

Vậy \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)là số hữu tỉ

26 tháng 7 2017

b/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\sqrt{\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{\left(2b+c\right)^2}}\)

\(=\sqrt{\frac{\left(b+c\right)^2.b^2+\left(b+c\right)^2.\left(2b+c\right)^2+\left(2b+c\right)^2.b^2}{\left(b+c\right)^2.\left(2b+c\right)^2.b^2}}\)

\(=\sqrt{\frac{\left(3b^2+3bc+c^2\right)^2}{\left(b+c\right)^2.\left(2b+c\right)^2.b^2}}\)

\(=\left|\dfrac{3b^2+3bc+c^2}{\left(b+c\right).\left(2b+c\right).b}\right|\)

Vậy \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}\) là số hữu tỉ

28 tháng 8 2020

bạn tham khảo nhé :  https://olm.vn/hoi-dap/detail/106812735697.html

không hiện link thì mình gửi qua tin nhắn nhé

12 tháng 6 2021

Ta có: \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\)

\(=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2-2\left(\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(c-a\right)\left(a-b\right)}\right)\)

\(=\left(\frac{1}{\left(a-b\right)}+\frac{1}{\left(b-c\right)}+\frac{1}{c-a}\right)^2-2\left(\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)

\(=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)

=> \(A=\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}=\sqrt{\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2}\)

\(=\left|\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right|\)

Vì a,b,c là các số hữu tỉ => \(\left|\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right|\)là một số hữu tỉ

=> A là một số hữu tỉ

15 tháng 9 2019

Thấy bài này chưa ai lm đúng nên cho e ké ạ:((

Đặt \(a-b=c;b-c=y;c-a=z\) khi đó \(x+y+z=0\)

Ta có:\(A=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}\)

\(\Rightarrow A^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(A^2=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\cdot\frac{x+y+z}{xyz}\)

\(\Rightarrow A^2=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\Rightarrow A=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) là số hữu tỉ.

23 tháng 5 2018

Đặt \(a-b=x;b-c=y\Rightarrow c-a=x-y\)

\(\Rightarrow\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}}\)

\(=\sqrt{\frac{y^2\left(x+y\right)^2+x^2\left(x+y\right)^2+x^2y^2}{x^2y^2\left(x+y\right)^2}}=\sqrt{\frac{x^4+y^4+2xy^3+2x^3y+3x^2y^2}{x^2y^2\left(x+y\right)^2}}\)

\(=\sqrt{\frac{\left(x^2+y^2+xy\right)^2}{x^2y^2\left(x+y\right)^2}}=\left|\frac{x^2+y^2+xy}{xy\left(x+y\right)}\right|\) là một số hữu tỉ (ĐPCM)

8 tháng 7 2015

Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)

Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\frac{\left(x+y+z\right)}{xyz}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(A=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\) là số hữu tỉ

8 tháng 7 2015

\(A=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\) thì phải?

17 tháng 6 2017

ta có \(\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2=\)\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}+2\left(\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(c-a\right)\left(a-b\right)}\right)\)

= \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\)= A2

vậy A = \(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)là một số hữu tỉ

23 tháng 9 2019

Câu hỏi của Phạm Quang Dương - Toán lớp 9 - Học toán với OnlineMath

3)

Ta có : \(a^2+1=a^2+ab+bc+ca\)

\(=a.\left(a+b\right)+c.\left(a+b\right)\)

\(=\left(a+b\right)\left(a+c\right)\)

Tương tự ta có : \(b^2+1=\left(b+a\right)\left(b+c\right)\)

\(c^2+1=\left(c+a\right)\left(c+b\right)\)

Khi đó :

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)

\(=\sqrt{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\) là một số hữu tỉ với a,b,c hữu tỉ.

13 tháng 7 2021

do bài này quá nhiều người đã đăng rồi nên mình sẽ gửi link qua phần tin nhắn cho bạn nhé 

13 tháng 7 2021

Bạn có nhìn thấy hình không ạ ?

Mình lấy bài tại link : https://olm.vn/hoi-dap/detail/82024444022.html

Có gì bạn vào đó tham khảo nhé !

httpschat.lazi.vnuploadimages202107file_bjn1626161258.PNG

_ Hok tốt _

11 tháng 8 2018

Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2.\frac{c+b-a}{abc}\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)    (vì: a=b+c)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}=|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)

Do a,b,c là các số hữu tỉ khác 0 nên \(|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\) là 1 số hữu tỉ

=.= hok tốt!!