Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo bất đẳng thức tam giác ta có :
\(\Rightarrow\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\left(1\right)}\)
Ta có : \(a+b+c=2\)
\(\Rightarrow\hept{\begin{cases}b+c=2-a\\a+b=2-c\\a+c=2-b\end{cases}\left(2\right)}\)
Từ (1) và (2)
\(\Rightarrow\hept{\begin{cases}a< 2-a\\b< 2-b\\c< 2-c\end{cases}\Rightarrow\hept{\begin{cases}2a< 2\\2b< 2\\2c< 2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}a< 1\\b< 1\\c< 1\end{cases}\left(đpcm\right)}\)
b ) Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left(a+b-c\right)\left(c+a-b\right)\le\left(\frac{2a}{2}\right)^2=a^2\)
Tường tự ta có : \(\hept{\begin{cases}\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(b+c-a\right)\left(c+a-b\right)\le c^2\end{cases}}\)
\(\Rightarrow\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)
\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow9abc\ge8\left(ab+bc+ca\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(ab+bc+ca\right)\)
\(+4\left(a^2+b^2+c^2\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\frac{2}{3}\)
Chúc bạn học tốt !!!
a ) Theo bất đẳng thức tam giác ta có :
\(\Rightarrow\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\left(1\right)}\)
Ta có : \(a+b+c=2\)
\(\Rightarrow\hept{\begin{cases}b+c=2-a\\a+b=2-c\\a+c=2-b\end{cases}\left(2\right)}\)
Từ (1) và (2)
\(\Rightarrow\hept{\begin{cases}a< 2-a\\b< 2-b\\c< 2-c\end{cases}\Rightarrow\hept{\begin{cases}2a< 2\\2b< 2\\2c< 2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}a< 1\\b< 1\\c< 1\end{cases}\left(đpcm\right)}\)
b ) Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left(a+b-c\right)\left(c+a-b\right)\le\left(\frac{2a}{2}\right)^2=a^2\)
Tương tự ta có : \(\hept{\begin{cases}\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(b+c-a\right)\left(c+a-b\right)\le c^2\end{cases}}\)
\(\Rightarrow\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)
\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow9abc\ge8\left(ab+bc+ca\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(ab+bc+ca\right)+4\left(a^2+b^2+c^2\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\frac{2}{3}\)
Chúc bạn học tốt !!!
Xét \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=\left(a^4-2a^2b^2+b^4\right)-2c^2\left(a^2-b^2\right)+c^4-4c^2b^2\)
=\(\left(a^2-b^2\right)^2-2\left(a^2-b^2\right)c^2+c^4-4c^2b^2=\left(a^2-b^2-c^2\right)^2-4c^2b^2\)
=\(\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)
=\(\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)
Mà a,b,c là 3 cạnh tam giác => a-b-c<0 ;a+b+c>0;a-b+c>0;a+b-c>0
=>\(...< 0\Rightarrow a^4+b^4+c^4< 2a^2b^2+2b^2c^2+2c^2a^2\left(ĐPCM\right)\)
ta có\(a^4+b^4+c^4< 2a^2b^2+2c^2a^2+2b^2c^2\)
<=> \(-a^4-b^4-c^4+2a^2b^2+2a^2c^2+2b^2c^2>0\)
<=>\(4a^2c^2-\left(a^4+b^4+c^4-2a^2b^2+2a^2c^2-2b^2c^2\right)>0\)
<=> \(4a^2c^2-\left(a^2-b^2+c^2\right)^2>0\)
<=>.......
<=>(a+b+c)(a+c-b)(a+b-c)(b-a+c)>0
luôn đúng vì a,b,c là 3 cạnh của 1 tam giác
vậy bđt trên dc cm dễ dàng
Ta có:
\(\left(2a^2-b^2-c^2\right)^2\ge0\)
\(\Leftrightarrow4a^4+b^4+c^4-4a^2b^2-4a^2c^2+2b^2c^2\ge0\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\ge6a^2b^2+6a^2c^2-3a^4\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge3a^2\left(2b^2+2c^2-a^2\right)\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2b^2+2c^2-a^2}}\ge\dfrac{\sqrt{3}a}{a^2+b^2+c^2}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}\ge\sqrt{3}\dfrac{a^2}{a^2+b^2+c^2}\)
Tương tự: \(\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}\ge\sqrt{3}.\dfrac{b^2}{a^2+b^2+c^2}\) ; \(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}.\dfrac{c^2}{a^2+b^2+c^2}\)
Cộng vế: \(P\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(a=b=c\)
ta có BĐT \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)(chứng minh = AM-GM)
\(abc\ge\left(2-2a\right)\left(2-2b\right)\left(2-2c\right)=8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(abc\ge8\left[1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\right]\)
\(\Leftrightarrow9abc\ge-8+8\left(ab+bc+ca\right)\)
do đó \(VT\ge4\left(a^2+b^2+c^2\right)+8\left(ab+bc+ca\right)-8\)
\(VT\ge4\left(a+b+c\right)^2-8=16-8=8\)
Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)