K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

\(\Delta'=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

\(=\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)

\(=\left(c+a-b\right)\left(c-a+b\right)\left(a+b+c\right)\left(a+b-c\right)>0\)

=> pt luôn có 2 nghiệm pb  .

26 tháng 5 2015

Nếu a2 +b2-c2 = 0  ABC là tam giác vuông tại c thì (*) có nghiệm x = 0
Nếu a2 +b2-c2  0 ta có 
 = (2ab)2 – (a2 +b2-c2)2 
= (2ab + a2 +b2-c2)(2ab - a2 -b2+c2) 
= [(a+b)2 – c2][c2-(a-b)2]
= (a+b-c)(a+b+c)(c+b-a)(c+a-b) > 0
Vì a,b,c là 3 cạnh của một tam giác nên > 0 , vậy phương trình luôn có 2 nghiệm ( tổng hai cạnh của một tam giác luôn lớn hơn cạnh còn lại )
Tóm lại phương trình (*) luôn luôn có nghiệm .


NV
30 tháng 7 2021

a.

\(\Delta=\left(a^2+b^2-c^2\right)^2-4a^2b^2=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)

\(=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)

Do a;b;c là độ dài 3 cạnh của 1 tam giác nên:

\(\left\{{}\begin{matrix}a< b+c\Rightarrow a-b-c< 0\\a+c>b\Rightarrow a-b+c>0\\a+b>c\Rightarrow a+b-c>0\end{matrix}\right.\)

\(\Rightarrow\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\)

\(\Rightarrow\Delta< 0\)

\(\Rightarrow\) Phương trình vô nghiệm

Đề bài sai

NV
30 tháng 7 2021

b.

\(\Delta=\left(a+b+c\right)^2-4\left(ab+bc+ca\right)\)

\(=a^2+b^2+c^2-2ab-2bc-2ca\)

Do a;b;c là độ dài 3 cạnh của 1 tam giác nên:

\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2ab+2bc+2ca\)

\(\Rightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)

\(\Rightarrow\Delta< 0\)

\(\Rightarrow\) Phương trình vô nghiệm

Đề bài sai