Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Cho tam giác ABC vuông tại A. Theo định lí Pitago ta có:
A. AC mũ 2= AB mũ 2 + BC mũ 2 B. AB mũ 2= AC mũ 2 + BC mũ 2
C. BC mũ 2 = AB mũ 2 + AC mũ 2 D. BC mũ 2 = AB mũ 2 - AC mũ 2
Chúc bạn học tốt!
Bài làm:
Ta có:
Xét trong tam giác vuông BHA vuông tại H có:
\(\widehat{BAH}+\widehat{ABH}=90^0\Rightarrow\widehat{BAH}=90^0-\widehat{ABH}=90^0-\widehat{B}\)(1)
Xét trong tam giác vuông ABC vuông tại A có:
\(\widehat{ABC}+\widehat{ACB}=90^0\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{B}\)(2)
Từ (1) và (2)
=> \(\widehat{BAH}=\widehat{ACB}=\widehat{C}\)
b) Phần b mình nghĩ bạn viết sai đề rồi nhé
Mình nghĩ đề sửa lại phải là: \(AB^2+CH^2=AC^2+BH^2\)
Xét tam giác vuông AHB vuông tại H có:
\(AB^2=BH^2+AH^2\)\(\Rightarrow AB^2-BH^2=AH^2\left(3\right)\)
Xét tam giác vuông AHC vuông tại H có:
\(AC^2=CH^2+AH^2\)\(\Rightarrow AC^2-CH^2=AH^2\)(4)
Từ (3) và (4)
=> \(AB^2-BH^2=AC^2-CH^2\)
<=> \(AB^2+CH^2=AC^2+BH^2\)
=> ĐPCM
Học tốt!!!!
a) xét \(\Delta ABC\)vuông tại A
\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)
THAY\(BC^2=5^2+40^2\)
\(BC^2=25+1600\)
\(BC^2=1625\)
\(\Rightarrow BC=\sqrt{1625}\)
B) XÉT LẦN LƯỢT CÁC \(\Delta ABH;\Delta ACH\)
CÓ \(\hept{\begin{cases}AB^2=BH^2+HA^2\\AC^2=HC^2+HA^2\end{cases}}\)
\(\hept{\begin{cases}AB^2=BH^2+HA^2\left(1\right)\\HC^2=AC^2-HA^2\left(2\right)\end{cases}}\)
CỘNG VẾ THEO VẾ ( 1) VÀ (2)
\(\Rightarrow AB^2+CH^2=BH^2+HA^2+AC^2-HA^2\)
\(\Rightarrow AB^2+CH^2=AC^2-HA^2+HA^2+BH^2\)
\(\Rightarrow AB^2+CH^2=AC^2+BH^2\left(ĐPCM\right)\)(- HA ^2 + HA^2 ĐỐI NHAU NÊN = 0 )
Câu 1 :
Xét \(\Delta ABC\) vuông tại A(gt) có :
\(BC^2=AB^2+AC^2\) (định lí PITAGO) (a)
Xét \(\Delta ABH\) vuông tại H \(AH\perp BC\left(gt\right)\)có :
\(AB^2=AH^2+BH^2\) (định lí PITAGO) (1)
Xét \(\Delta AHC\) vuông tại H \(AH\perp BC\left(gt\right)\) có :
\(AC^2=AH^2+CH^2\) (định lí PITAGO) (2)
Ta thay (1) và (2) vào (a) thì có :
\(BC^2=AB^2+AC^2=AH^2+BH^2+AH^2+CH^2=2AH^2+BH^2+CH^2\)
=> đpcm
Ta có : \(AB:AC=3:4\)
Hay : \(\dfrac{AB}{AC}=\dfrac{3}{4}\)
Nên có : \(AB=\dfrac{a}{3};AC=\dfrac{b}{4}\)
Đặt : \(\left\{{}\begin{matrix}\dfrac{a}{3}=k\rightarrow a=3k\\\dfrac{b}{4}=k\rightarrow b=4k\end{matrix}\right.\)
Xét \(\Delta ABC\) vuông tại A (gt) có :
\(BC^2=AB^2+AC^2\)
=> \(15^2=\left(3k\right)^2+\left(4k\right)^2\)
=> \(225=9k^2+16k^2\)
=> \(225=k^2\left(9+16\right)\)
=> \(225=k^2.25\)
=> \(k^2=\dfrac{225}{25}=9\)
=> \(k=\sqrt{9}=3\)
Nên : \(AB=3k=3.3=9\left(cm\right)\)
\(AC=4k=4.3=12\left(cm\right)\)
Mình làm hơi tắt chút do ngại trình bầy cái định lý pi - ta - go ở tam giác BDE