Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dungj BĐt Cauchy - Schwarz :
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\)
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a}\)
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a}\)
Cộng theo vế và thu gọn ta được :
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có : đpcm
Dấu " = " xảy ra khi \(a=b=c\)
Ta có
\(P=\frac{a+b+c}{2}\Rightarrow2p=a+b+c\)
áp dụng bđt Cauchy-Schwarz ta có
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-a-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(1\right)\)
C/m tương tự ta có
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\left(2\right)\)
\(\frac{1}{p-a}+\frac{1}{p-c}\ge\frac{4}{b}\left(3\right)\)
Cộng vế theo vế (1) (2) và (3) => đpcm
Dễ dàng CM BĐT sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b},\forall a,b>0\)
Áp dung: \(\hept{\begin{cases}\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\\\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a}\\\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{2p-c-a}=\frac{4}{b}\end{cases}}\)
Cộng vế theo vế các BĐT trên => ĐPCM
ta sử dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)(cái này bạn có thể dễ dàng chúng minh )
ta có
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\)(1)
tương tự ta có
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\) (2)
\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)(3)
cộng theo vế của bđt (1);(2);(3) ta có
\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
hay \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Áp dụng BĐT:1/a+1/b>=4/a+b
Ta có:
1/(p-a)+1/(p+b)>=4/(2p-a-b)=4/c
Các phần sau tương tự!
=>2VT>=4(1/a+1/b+1/c)
=>VT>=2(1/a+1/b+1/c)
b)
Dấu "=" xảy ra p-a=p-b=p-c => a=b=c
=>tg đều
Trước tiên ta chứng minh bổ đề: Với x, y dương thì ta có:
\(\frac{1}{x^n}+\frac{1}{y^n}\ge\frac{2^{n+1}}{\left(x+y\right)^n}\)
Với n = 1 thì nó đúng.
Giả sử nó đúng đến \(n=k\)hay \(\frac{1}{x^k}+\frac{1}{y^k}\ge\frac{2^{k+1}}{\left(x+y\right)^k}\left(1\right)\)
Ta chứng minh nó đúng đến \(n=k+1\)hay \(\frac{1}{x^{k+1}}+\frac{1}{y^{k+1}}\ge\frac{2^{k+2}}{\left(x+y\right)^{k+1}}\left(2\right)\)
Từ (1) và (2) cái ta cần chứng minh trở thành:
\(\frac{1}{x^{k+1}}+\frac{1}{y^{k+1}}\ge\left(\frac{1}{x^k}+\frac{1}{y^k}\right)\frac{2}{\left(x+y\right)}\)
\(\Leftrightarrow\left(y-x\right)\left(y^{k+1}-x^{k+1}\right)\ge0\)(đúng)
Vậy ta có ĐPCM.
Áp dụng và bài toán ta được
\(2\left(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}+\frac{1}{\left(c+a-b\right)^{2018}}\right)\ge\frac{2^{2019}}{2^{2018}.a^{2018}}+\frac{2^{2019}}{2^{2018}.b^{2018}}+\frac{2^{2019}}{2^{2018}.c^{2018}}\)
\(\Leftrightarrow\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}+\frac{1}{\left(c+a-b\right)^{2018}}\ge\frac{1}{a^{2018}}+\frac{1}{b^{2018}}+\frac{1}{c^{2018}}\)
Giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{p-a}+\frac{1}{p-b}\geq \frac{4}{2p-a-b}=\frac{4}{c}\)
\(\frac{1}{p-b}+\frac{1}{p-c}\geq \frac{4}{2p-b-c}=\frac{4}{a}\)
\(\frac{1}{p-b}+\frac{1}{p-c}\geq \frac{4}{2p-b-c}=\frac{4}{a}\)
Cộng theo vế và thu gọn ta được \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\geq 2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c$
cậu giỏi quá !