K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016
  • Chứng minh \(\sqrt{p}< \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\)

Vì \(\sqrt{p}>0\) nên ta có điều tương đương \(p< \left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\)

\(\Leftrightarrow p< \left(3p-a-b-c\right)+2\left(\sqrt{p-a}.\sqrt{p-b}+\sqrt{p-b}.\sqrt{p-c}+\sqrt{p-c}.\sqrt{p-a}\right)\)

\(\Leftrightarrow\sqrt{p-a}.\sqrt{p-b}+\sqrt{p-b}.\sqrt{p-c}+\sqrt{p-c}.\sqrt{p-a}>0\) (luôn đúng)

  • Chứng minh \(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Áp dụng BĐT Bunhiacopxki, ta được : \(\left(1.\sqrt{p-a}+1.\sqrt{p-b}+1.\sqrt{p-c}\right)^2\le3\left(p-a+p-b+p-c\right)\)

\(\Rightarrow\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Vậy có đpcm.

28 tháng 11 2019

Áp dụng BĐT Bu- nhi - a:

\(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\)\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(p-a+p-b+p-c\right)}\)

\(=\sqrt{3\left(3p-2p\right)}=\sqrt{3p}\)(Vì p là nửa chu vi nên \(a+b+c=2p\))

28 tháng 11 2019

Dấu "="\(\Leftrightarrow a=b=c\)hay tam giác ABC đều

AH
Akai Haruma
Giáo viên
Hôm kia

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c})^2\leq (p-a+p-b+p-c)(1+1+1)=3(3p-a-b-c)=3(3p-2p)=3p$

$\Rightarrow \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\leq \sqrt{3p}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

14 tháng 10 2016
  • Chứng minh \(\sqrt{p}< \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\left(1\right)\)

Ta biến đổi tương đương : \(\left(1\right)\Leftrightarrow p< \left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\)

\(\Leftrightarrow p< 3p-\left(a+b+c\right)+2\sqrt{p-a}.\sqrt{p-b}+2\sqrt{p-b}.\sqrt{p-c}+2\sqrt{p-c}.\sqrt{p-a}\)

\(\Leftrightarrow\sqrt{p-a}.\sqrt{p-b}+\sqrt{p-b}.\sqrt{p-c}+\sqrt{p-c}.\sqrt{p-a}>0\) (luôn đúng)

  • Chứng minh \(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Áp dụng bđt Bunhiacopxki, ta có \(\left(1.\sqrt{p-a}+1.\sqrt{p-b}+1.\sqrt{p-c}\right)^2\le\left(1^2+1^2+1^2\right)\left(3p-a-b-c\right)\)

\(\Leftrightarrow\left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\le3p\Rightarrow\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Dấu "=" xảy ra khi a = b = c => Tam giác ABC là tam giác đều

AH
Akai Haruma
Giáo viên
9 tháng 7 2020

Lời giải:

Biểu thức không có max mà chỉ có min bạn nhé. Nếu tính min thì làm như sau:

Đặt $x^{10}=a$ với $a\geq 0$

Khi đó: $P=a^{10}-10a+10$

Áp dụng BĐT Cô-si cho các số không âm ta có:

$a^{10}+\underbrace{1+1+1+...+1}_{9}\geq 10\sqrt[10]{a^{10}}=10a$

$\Leftrightarrow a^{10}+9\geq 10a$

$\Rightarrow P=(a^{10}+9)-10a+1\geq 10a-10a+1=1$

Vậy $P_{\min}=1$ khi $a=1\Leftrightarrow x=\pm 1$

26 tháng 7 2020

Dạ em cảm ơn ạ

NV
27 tháng 7 2021

Đặt \(P=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Ta có:

\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\dfrac{\sqrt{2}}{2}\left(a+b\right)\)

Tương tự và cộng lại ta được BĐT bên trái

Dấu "=" xảy ra khi \(a=b=c\)

Bên phải:

Áp dụng BĐT Bunhiacopxki:

\(P^2\le3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)=6\left(a^2+b^2+c^2\right)\)

Mặt khác do a;b;c là 3 cạnh của 1 tam giác:

\(\Rightarrow\left\{{}\begin{matrix}a+b>c\\a+c>b\\b+c>a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ac+bc>c^2\\ab+bc>b^2\\ab+ac>c^2\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)< 6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2\le3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2< 3\left(a+b+c\right)^2\Rightarrow P< \sqrt{3}\left(a+b+c\right)\)

27 tháng 7 2021

thề luôn bài như vầy mà cả viết lẫn nghĩ có 10phut

 

NV
22 tháng 3 2019

Ta có \(p-a>0;p-b>0;p-c>0\), áp dụng BĐT Bunhia:

\(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{\left(1+1+1\right)\left(3p-\left(a+b+c\right)\right)}\)

\(\Rightarrow\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3\left(3p-2p\right)}=\sqrt{3p}\)

Dấu "=" xảy ra khi \(a=b=c\)

Lại áp dụng BĐT \(\sqrt{x}+\sqrt{y}+\sqrt{z}>\sqrt{x+y+z}\) với x,y,z dương:

\(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}>\sqrt{3p-\left(a+b+c\right)}=\sqrt{3p-2p}=\sqrt{p}\)

21 tháng 1 2016

Bất đẳng thức trên tương đương với 

[(p-a)1/2  +(p-b) 1/2  +(p-c)1/2 ] 2  \(\le\)  3p \(\Leftrightarrow\) p-a+p-b+p-c +2 [ (p-a)1/2(p-b)1/2 + (p-b)1/2(p-c)1/2 + (p-c)1/2(p-a)1/2]\(\le\)3p

 \(\Leftrightarrow\) (p-a)1/2(p-b)1/2 + (p-b)1/2(p-c)1/2 + (p-c)1/2(p-a)1/2\(\le\)p

Theo bất đảng thức cosi thì   (p-a)1/2(p-b)1/2 \(\le\)[(p-a)+(p-b)]/2=c/2; Tương tự (p-b)1/2(p-c)1/2 \(\le\)a/2; (p-c)1/2(p-a)1/\(\le\)b/2; 

Cộng tất cả các vế lại ta được điều phải chứng minh