K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Do a,b,c là độ dài 3 cạnh tam giác:

\(a< b+c;b< c+a;c< a+b\)

\(\Rightarrow a^2< ab+ac;b^2< bc+ab;c^2< ac+bc\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca>\frac{a^2+b^2+c^2}{2}\)

12 tháng 6 2015

: Nhầm đề bài rồi a^2 + b^2 + c^ 2 > 2(ab+bc+ac)

12 tháng 6 2015

\(ab+bc=b\left(a+c\right)>b.b=b^2\)

\(bc+ca=c\left(a+b\right)>c.c=c^2\)

\(ca+ab=a\left(b+c\right)>a.a=a^2\)

\(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

11 tháng 2 2020

Ta có:

\(\left(a+b\right)^2\ge0\)

\(\Rightarrow a^2+2ab+b^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\) (1).

\(\left(b+c\right)^2\ge0\)

\(\Rightarrow b^2+2bc+c^2\ge0\)

\(\Rightarrow b^2+c^2\ge2bc\) (2).

\(\left(c+a\right)^2\ge0\)

\(\Rightarrow c^2+2ca+a^2\ge0\)

\(\Rightarrow c^2+a^2\ge2ac\) (3).

Cộng theo vế (1), (2) và (3) ta được:

\(a^2+b^2+b^2+c^2+a^2+c^2\ge2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2\ge2.\left(ab+bc+ca\right)\)

\(\Rightarrow2.\left(a^2+b^2+c^2\right)\ge2.\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\) (*).

Vì a, b, c là độ dài ba cạnh của tam giác (gt).

\(\left\{{}\begin{matrix}a+b>c\\b+c>a\\c+a>b\end{matrix}\right.\) (theo bất đẳng thức trong tam giác).

=> \(\left\{{}\begin{matrix}ac+bc>c^2\left(4\right)\\ab+ac>a^2\left(5\right)\\bc+ab>b^2\left(6\right)\end{matrix}\right.\)

Cộng theo vế (4), (5) và (6) ta được:

\(ac+bc+ab+ac+bc+ab>a^2+b^2+c^2\)

\(\Rightarrow2ab+2bc+2ac>a^2+b^2+c^2\)

\(\Rightarrow2.\left(ab+bc+ca\right)>a^2+b^2+c^2\) (**).

Từ (*) và (**) => \(ab+bc+ca\le a^2+b^2+c^2< 2.\left(ab+bc+ca\right)\left(đpcm\right).\)

Chúc bạn học tốt!

11 tháng 2 2020

Theo BĐTBĐT tam giác ta có:
a<b+c
=>a2<ab+ac
b<c+a
=>b2<bc+ba
c<a+b
=>c2<ca+cb
Cộng vế với vế 3 BĐT trên ta được:
a2+b2+c2<2(ab+bc+ca)(1)

Ta có (a−b)2+(b−c)2+(c−a)2≥0 với mọi a,b,c là độ dài 3 cạnh của tam giác
<=>a2−2ab+b2+b2−2bc+c2+c2−2ca+a2≥0
<=>2(a2+b2+c2)≥2(ab+bc+ca)
<=>ab+bc+ca≤a2+b2+c2(2)
Dấu = xảy ra khi a=b=c<=> tam giác đó đều
(1),(2)=>đpcm

19 tháng 12 2015

nguyễn hồng quân đấy là phim hành động nhé chứ không phải phim hoạt hình nhé bạn !!!

5 tháng 5 2017

Theo bđt tam giác ta có: a<b+c 

Do a>0 => a2<ab+ac 

Tương tự có b2<bc+ab;c2<ac+bc

Suy ra a2+b2+c2<2(ab+bc+ca)

10 tháng 7 2016

bài này ta sẽ phải vận dụng linh hoạt hằng đẳng thức hiệu 2 bình phương là chính: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(4b^2c^2-\left(b^2+c^2-a^2\right)^2=\left(2bc\right)^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc-b^2-c^2+a^2\right).\left(2bc+b^2+c^2-a^2\right)\)

\(=\left(a^2+2bc-b^2-c^2\right)\left(2bc+b^2+c^2-a^2\right)=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)

\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)\)

Vì a,b,c là độ dài 3 cạnh của tam giác nên theo bất đẳng thức tam giác: 

+a+c > b => a+c-b > 0

+b+c > a=>b+c-a > 0

+a+b+c và b+c+a hiển hiên đều lớn hơn 0

Nên \(\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)>0\)

\(=>4b^2c^2-\left(b^2+c^2-a^2\right)^2>0\left(đpcm\right)\)