K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

\(\left(a+b+c\right)^2\le\left(2b+c\right)^2\)

Xét hiệu: 

\(\left(2b+c\right)^2-9bc=4b^2-5bc+c^2=\left(b-c\right)\left(4b-c\right)\le0\)

Dễ thấy b - c < 0

\(c< a+b\le2b\)

=> 4b - c > 0

Q.E.D dấu "=" xảy ra khi a = b = c

29 tháng 6 2018

\(\left(a+b+c\right)^2\le\left(2b+c\right)^2\)

Ta xét hiệu:

\(\left(2b+c\right)^2-9bc=4b^2-5bc+c^2=\left(b-c\right)\left(4ab-c\right)\le0\)

Dễ thấy: 

\(\hept{\begin{cases}b-c< 0\\c< a+b\ge2ab\end{cases}}\Rightarrow4b-c>0\)

Q.E.D dấu: "=" <=> a = b = c

27 tháng 5 2019

1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0

theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :

2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )

\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

27 tháng 5 2019

Ta có a + b > c, b + c > a, a + c > b

Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

vậy ...

20 tháng 10 2021

AH
Akai Haruma
Giáo viên
20 tháng 10 2021

Lời giải:
\(A=(2ab)^2-(a^2+b^2-c^2)^2=[2ab+(a^2+b^2-c^2)][2ab-(a^2+b^2-c^2)]\)

\(=[(a+b)^2-c^2][c^2-(a-b)^2]=(a+b-c)(a+b+c)(c-a+b)(c+a-b)\)

\(=(a+b+c)(a+b-c)(b+c-a)(c+a-b)>0\) theo BĐT tam giác

Do đó ta có đpcm.

7 tháng 11 2021

\(A=\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\)

\(=\dfrac{3}{c+a-b}+\dfrac{3}{a+b-c}+\dfrac{2}{b+c-a}+\dfrac{2}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)

\(=3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)+2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)

\(do\) \(a,b,c\) \(là\) \(độ\) \(dài\) \(3\) \(cạnh\) \(\Delta\Rightarrow a,b,c\) \(không\) \(âm\) \(\) 

\(và\left\{{}\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\) \(\Rightarrowáp\) \(dụng\) \(Am-GM\)

\(\Rightarrow\left\{{}\begin{matrix}3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)\ge3.\dfrac{4}{c+a-b+a+b-c}\ge\dfrac{12}{2a}\ge\dfrac{6}{a}\\2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)\ge2.\dfrac{4}{b+c-a+a+b-c}\ge\dfrac{8}{2b}\ge\dfrac{4}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{4}{b+c-a+c+a-b}\ge\dfrac{4}{2c}\ge\dfrac{2}{c}\\\end{matrix}\right.\)

\(\Rightarrow A\ge\dfrac{6}{a}+\dfrac{4}{b}+\dfrac{2}{c}\)

12 tháng 2 2018

A E B D C x b c c A

Từ B kẻ đường thẳng song song với đường phân giác AD, cắt CA ở E. Tam giác ABE cân ở A nên AE = AB = c

\(\Rightarrow\)CE = CA + AE = b + c 

Do đó AD // BE nên ta có :

\(\frac{AD}{BE}=\frac{CA}{CE}\)hay \(\frac{x}{BE}=\frac{b}{b+c}\), do đó \(x=\frac{b}{b+c}.BE\)

Mà BE < AB + AC < 2c

\(\Rightarrow\) \(x< \frac{2bc}{b+c}\)hay \(\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\)( 1 )

Tương tự ta có : \(\frac{1}{y}>\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)( 2 )

ta cũng có : \(\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)( 3 )

Cộng từng vế của ( 1 ) ; ( 2 ) ; ( 3 ) ta có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vậy \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(ĐPCM\right)\)

Hình mình vẽ hơi xấu tí thông cảm

10 tháng 2 2017

a)Từ \(2\left(a^2+b^2\right)=5ab\)\(\Rightarrow2a^2+2b^2-5ab=0\)

\(\Rightarrow2a^2-4ab-ab+2b^2=0\)

\(\Rightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Rightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}a=\frac{b}{2}\\a=2b\end{cases}}\)

Thay vào tính được P

b)sai đề

5 tháng 3 2016

a−b<c<=>a2+b2−2ab<c2a−b<c<=>a2+b2−2ab<c2

b−c<a<=>b2+c2−2bc<a2b−c<a<=>b2+c2−2bc<a2

a−c<b<=>a2+c2−2ac<b2

chuyển qua là được

5 tháng 3 2016

cảm ơn bạn nhiều nha :)