K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

bo deo biet

5 tháng 3 2020

Vì a, b, c là độ dài của 3 cạnh tam giác \(\Rightarrow a,b,c>0\)

Do chu vi của tam giác bằng 1 \(\Rightarrow a+b+c=1\Rightarrow b+c=1-a\)

Giả sử : \(ab+ac+bc>a\cdot b\cdot c\)

\(\Rightarrow ab+ac+bc-abc>0\)

\(\Rightarrow a\left(b+c\right)+bc\left(1-a\right)>0\Rightarrow a\left(b+c\right)+bc\left(b+c\right)>0\)

\(\Rightarrow\left(b+c\right)\left(a+bc\right)>0\)( thỏa mãn vì \(a,b,c>0\))

Vậy \(ab+bc+ac>a\cdot b\cdot c\)( ĐPCM )

4 tháng 3 2018

Chu vi tam giác ABC là 3 + 5 +7 = 15
Ta có :
P ABC / P A'B'C' = AB / A'B'
<=> 15 / 55 = 3 / A'B'
=> A'B' = ( 55 x 3 )/ 15 = 11 cm
P ABC / P A'B'C' = AC / A'C'
<=> 15 / 55 = 5 / A'C'
=> A'C' = ( 55 x 5 ) / 15 = 55/3 cm
P ABC / P A'B'C' = BC / B'C'
<=> 15 / 55 = 7 / B'C'
=> B'C' = ( 55 x 7 ) / 15 = 77/3 cm

17 tháng 4 2020

A B C A' B' C'

\(\Rightarrow\Delta ABC\)đồng dạng \(\Delta A'B'C'\left(gt\right)\)

Áp dụng tính chất DTSBN , ta có :

\(\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}=\frac{AB+AC+BC}{A'B'+A'C'+B'C'}=\frac{C_{ABC}}{C_{A'B'C'}}\)

Hay \(\frac{3}{A'B'}=\frac{7}{B'C'}=\frac{5}{A'C'}=\frac{C_{ABC}}{55}=\frac{3+5+7}{55}=\frac{15}{55}=\frac{3}{11}\)

Với CABC và CA'B'C'  lần lượt là chu vi của tam giác ABC , A'B'C' 

\(+)\frac{3}{A'B'}=\frac{3}{11}\Rightarrow A'B'=\frac{3.11}{3}=11cm\)

\(+)\frac{7}{A'C'}=\frac{3}{11}\Rightarrow B'C'=\frac{7.11}{3}\approx25,67cm\)

\(+)\frac{5}{A'C'}=\frac{3}{11}\Rightarrow A'C'=\frac{5.11}{3}\approx18,33cm\)

26 tháng 3 2019

kb đi rồi mk giúp

26 tháng 3 2019

(p-a)(p-b)(p-c)=(\(\left(\frac{b+c-a}{2}\right)\left(\frac{a+c-b}{2}\right)\left(\frac{a+b-c}{2}\right)\)

Mà a,b,c là ba canh tam giác nên \(b+c-a\le a\)

Tương tự suy ra

3 tháng 3 2018

Tam giác ABC có chu vi bằng 74cm, AC là cạnh lớn nhất. Đường phân giác của góc A chia cạnh BC thành hai đoạn tỉ lệ với 2:3; đường phân giác của góc C chia cạnh AB thành hai đoạn tỉ lệ với 4:5. Tính độ dài các cạnh của tam giác ABC. 

AB + BC + AC = 74 (*) 
Trong ∆ ABC phân giác AD → AB/AC = DB/DC = 2/3 (AC > AB) 
→ AB = 2/3 . AC (1) , tương tự với phân giác CE ta suy ra 
BC = 4/5 . AC (2) . Thế tất cả vào (*) ta được: 
2/3 . AC + 4/5 . AC + AC = 74 → 37AC/15 = 74 → AC = 30cm 
thế vào (1) và (2) ta được AB = 10cm, BC = 24cm