K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
15 tháng 4 2016
a2+b2+c2<2(ab+bc+ac)
<=>a2+b2+c2-2ab-2ac-2bc<0
<=>a^2+b^2+c^2-2ab-2ac+2bc-4bc<0
<=>(a-b-c)2-4bc<0
Mà a,b,c là độ dài 3 cạnh của tam giác nên a-b-c<0=>(a-b-c)2<0(1)
bc>0=>4bc>0=>-4bc<0(2)
từ (1) và (2) =>(a-b-c)2-4bc<0
k cho mình nha
HP
15 tháng 4 2016
Theo BĐT tam giác:
(+) a+b > c
<=>(a+b).c > c2<=>ac+bc > c2 (1)
(+)a+c > b
<=>(a+c).b > b2<=>ab+bc > b2 (2)
(+)b+c > a
<=>(b+c).a > a2<=>ab+ac > a2 (3)
Cộng từng vế (1);(2);(3)
=>a2+b2+c2 < ac+bc+ab+bc+ab+ac=2ab+2bc+2ac=2(ab+bc+ca)
=>ĐPCM
K
1
LL
18 tháng 6 2015
Do a,b,c là độ dài cạnh tam giác nên:
a<b+c
b<c+a
c<a+b
ta co:
a^2b +b^2c+c^2a+ca^2+bc^2+ab^2
= a^2(b+c) + b^2(c+a) + c^2(a+b)
> a^2.a +b^2.b+c^2.c =a^3+b^3+c^3
<=> a^2b +b^2c+c^2a+ca^2+bc^2+ab^2 - a^3-b^3-c^3 > 0
Ta có (a-b)²≥0 nên a²+b²≥2ab, tương tự b²+c²≥2bc, c²+a²≥2ca, cộng vế với vế rồi chia 2 2 vế ta có a²+b²+c²≥ab+bc+ca
a, b, c là 3 cạnh tam giác nên a+b>c → c(a+b)>c², tương tự b(a+c)>b², a(b+c)>a², cộng vế với vế ta có 2(ab+bc+ca)>a²+b²+c²
Áp dụng BĐT Cauchy cho 3 số không âm a^2 + b^2 + c^2 là ra nha bạn