Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng
Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.
Không mất tính tổng quát giả sử \(0\le\)a<b<c
Ta có:\(ab+bc+ca\ge bc\)
\(\frac{1}{\left(a-b\right)^2}=\frac{1}{\left(b-a\right)^2}\ge\frac{1}{b^2}\)
TT\(\Rightarrow\frac{1}{\left(c-a\right)^2}\ge\frac{1}{c^2}\)\(\Rightarrow VT\ge bc\left(\frac{1}{b^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{c^2}\right)\)
\(VT\ge\frac{b^2+c^2}{bc}+\frac{bc}{\left(b-c\right)^2}\)
Đặt \(b^2+c^2=x;bc=y\)
\(\Rightarrow VT\ge\frac{x}{y}+\frac{y}{x-2y}\)
Ta cm:\(\frac{x}{y}+\frac{y}{x-2y}\ge4\)
\(\Leftrightarrow x^2-2xy+y^2\ge4xy-8y^2\)
\(\Leftrightarrow\left(x-3y\right)^2\ge0\left(real\right)\)
=>đpcm
"="<=>a=0;\(b^2+c^2=3xy\) và các hoán vị
Áp dụng BĐT Svarxơ:
\(\left(ab+bc+ca\right).\Sigma\frac{1}{\left(a-b\right)^2}\ge\left(ab+bc+ca\right).\frac{9}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
Ta cần c/m:
\(\frac{9\left(ab+bc+ca\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\ge4\)
\(\Rightarrow9\left(ab+bc+ca\right)\ge4\left[2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\right]\)
\(\Leftrightarrow17\left(ab+bc+ca\right)\ge8\left(a^2+b^2+c^2\right)\)
Bt làm đến đây thôi.
Nguyễn Việt Lâm Làm tiếp với.
mình hướng dẫn thôi được không chứ mình đá bóng bị ngã nên giờ bấm giải chi tiết không nổi
thôi mình sẽ giải chi tiết luôn nhé chứ hướng dẫn khó hiểu lắm
Bất đẳng thức sau đây đúng với mọi a, b, c không âm:
\(\left(ab+bc+ca\right)\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{49}{18}+k\left(\frac{a}{b+c}-2\right)\)
với \(k=\frac{23}{25}\).
Note. \(k_{\text{max}}\approx\text{0.92102588865167}\) là nghiệm của phương trình bậc 5:
15116544*k^5+107495424*k^4-373143024*k^3+280903464*k^2+209797812*k-227353091 = 0
(
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhh
\(P=\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(b+1\right)\left(c+1\right)}+\frac{c^3}{\left(c+1\right)\left(a+1\right)}-1\)
Giả sử \(c=min\left\{a,b,c\right\}\)
Khi đó ta được: \(ab+bc+ca\ge ab;\frac{1}{\left(b-c\right)^2}\ge\frac{1}{b^2};\frac{1}{\left(c-a\right)^2}\ge\frac{1}{a^2}\)
Do đó ta cần chứng minh \(ab\left(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\right)\ge4\)hay \(\frac{ab}{\left(a-b\right)^2}+\frac{\left(a-b\right)^2}{ab}\ge2\)*đúng theo bất đẳng thức Cô - si*
Đẳng thức xảy ra khi \(a^2+b^2=3ab,c=0\)
Giả sử c = min(a,b,c), khi đó ab+bc+ca>=ab; 1/(b-c)^2>=1/b^2; 1/(c-a)^2>=1/a^2. Ta cần chứng minh: ab(1/(a-b)^2 +1/b^2 + 1/a^2 )>=4. Bằng cách biến đổi tương đương ta được: [ab/(a-b)^2 +a/b + b/a]>=4 <=> ab/(a-b)^2 +a/b+b/a-4>=0 <=>ab/(a-b)^2 + (a^2+b^2-4ab)/ab>=0 <=> ab/(a-b)^2 +[(a-b)^2-2ab]/ab>=0 <=> ab/(a-b)^2 +(a-b)^2/ab - 2 >=0 (1).
Đặt k = ab/(a-b)^2>=0 => (a-b)^2 = 1/k >0.
Áp dụng BĐT Cosi cho k và 1/k => k+1/k >=2 căn(k.1/k)=2 => k+1/k-2>=0 => (1) đã được chứng minh.
Vậy (ab+bc+ca)[1/(a-b)^2 + 1/(b-c)^2 + 1/(c-a)^2]>=4.
Dấu bằng xảy ra khi c = 0 và k=1/k => k^2=1 => a^2b^2=(a-b)^4 => (a-b)^2=ab => a^2+b^2-2ab=ab => a^2-3ab+b^2 = 0. Xem đây là PT bậc hai theo a với hệ số theo b. Lập Delta = 9b^2-4b^2 = 5b^2 => a = (3b+bcăn 5)/2 hoặc a = (3b-bcăn 5)/2.