Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\le\sqrt{3\left(9a+16b+9b+16c+9c+16a\right)}=\sqrt{75\left(a+b+c\right)}=15\)
\(P_{max}=15\) khi \(a=b=c=1\)
Thầy có thể viết rõ hơn chút không ạ? Em thấy còn mơ màng lắm thầy ạ
Ta có : \(9=a^2+a^2+b^2+a^2+b^2+bc+bc+c^2+c^2\ge9\sqrt[9]{a^6\cdot b^6\cdot c^6}=9\sqrt[3]{a^2\cdot b^2\cdot c^2}\Rightarrow abc\le1\) Áp dụng bđt Cô-si vào các số dương : \(a^2+\dfrac{1}{b^2}+\dfrac{1}{b^2}+\dfrac{1}{b^2}\ge4\sqrt[4]{\dfrac{a^2}{b^6}}=4\sqrt{\dfrac{a}{b^3}}\Rightarrow\sqrt{a^2+\dfrac{3}{b^2}}\ge2\cdot\sqrt[4]{\dfrac{a}{b^3}}\)
CM tương tự ta được: \(\sqrt{b^2+\dfrac{3}{c^2}}\ge2\sqrt[4]{\dfrac{b}{c^3}};\sqrt{c^2+\dfrac{3}{a^2}}\ge2\sqrt[4]{\dfrac{c}{a^3}}\Rightarrow P\ge2\cdot\left(\sqrt[4]{\dfrac{a}{b^3}}+\sqrt[4]{\dfrac{b}{c^3}}+\sqrt[4]{\dfrac{c}{a^3}}\right)\ge2\cdot3\cdot\sqrt[12]{\dfrac{a}{b^3}\cdot\dfrac{b}{c^3}\cdot\dfrac{c}{a^3}}=6\sqrt[12]{\dfrac{1}{\left(abc\right)^2}}=6\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng BĐT AM - GM ta có:
\(4\sqrt{ab}=2\sqrt{a.4b}\le a+4b\)
\(4\sqrt{bc}=2\sqrt{b.4c}\le b+4c\)
\(4\sqrt[3]{abc}=\sqrt[3]{a.4b.16c}\le\frac{a+4b+16c}{3}\)
Cộng theo vế 3 BĐT ta được:
\(8a+3b+4\left(\sqrt{ab}+\sqrt{bc}+\sqrt[3]{abc}\right)\le\frac{28}{3}\left(a+b+c\right)\)
\(\Rightarrow P\le\frac{28\left(a+b+c\right)}{3+3\left(a+b+c\right)^2}=\frac{14}{3}-\frac{14\left(a+b+c-1\right)^2}{3\left[\left(a+b+c\right)^2+1\right]}\le\frac{14}{3}\)
\(\Rightarrow Max_P=\frac{14}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow a+b+c=1\)và \(a=4b=16c\)
\(\Leftrightarrow a=\frac{16}{21};b=\frac{4}{21};c=\frac{1}{21}\)
\(a;b\ge-7\) \(bđt\) \(minicopxki\)
\(\Rightarrow\sqrt{a+7}+\sqrt{b+7}=\sqrt{\sqrt{a}^2+\sqrt{7}^2}+\sqrt{\sqrt{b}^2+\sqrt{7}^2}\ge\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2+28}\)
\(\Rightarrow9\ge\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2+28}\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\le81-28=53\Rightarrow\sqrt{a}+\sqrt{b}\le\sqrt{53}\)
\(dâu"="xảy\) \(ra\Leftrightarrow a=b=13,25\)
\(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\)
\(=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\dfrac{bc}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{ca}{b\left(a+b+c\right)+ca}}\)
\(=\sqrt{\dfrac{ab}{\left(b+c\right)\left(c+a\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)=\dfrac{1}{2}\)
\("=" \Leftrightarrow a=b=c=\frac{1}{3}\)
Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)
\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)
Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)
Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)
a) \(P=1957\)
b) \(S=19.\)
bạn đã trúng tà thuật đạo từ con mắt này .Nói cách khác bạn đã trúng ảo thuật ,chỉ có mình và itachi mới giải thuật được cho bạn nha!!
Chắc áp dụng được Cauchy-Schwarz
Ta có: \(\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{a+b+\frac{4}{3}}{3}=\frac{a+b}{3}+\frac{4}{9}\)
Tương tự rồi cộng các vế của BĐT lại, ta được: \(\sqrt[3]{\frac{4}{9}}P\le\frac{2\left(a+b+c\right)}{3}+\frac{4}{3}=2\Rightarrow P\le\sqrt[3]{18}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)