\(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

Ta có : \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}=\frac{3}{b+c}+\frac{3}{c+a}+\frac{3}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)

Ta cầm chứng minh : \(\hept{\begin{cases}\frac{3}{a+b}+\frac{3}{a+c}+\frac{3}{b+c}\ge\frac{9}{2}\left(1\right)\\\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{3}{2}\left(2\right)\end{cases}}\)

Ta có bđt (1) \(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}\ge\frac{9}{2}\)

\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge9\)

\(\Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(a+c\right)\right]\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge9\)

Áp dụng bđt AM GM ta có :

\(\hept{\begin{cases}\left(a+b\right)+\left(b+c\right)+\left(a+c\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\\\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\ge\frac{3}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\end{cases}}\)

Nhân vế với vế ta được đpcm ; Vậy bđt (1) đc chứng minh

Ta có \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{3}{2}\) 

Vậy bđt (2) đc chứng minh

Do 2 bất đẳng thức dước chứng minh

\(\Rightarrow\frac{3+a^2}{b+c}+\frac{3+b^2}{a+c}+\frac{3+c^2}{a+b}\ge\frac{3}{2}+\frac{9}{2}=6\) (ĐPCM)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

mẫu phải là mũ 2 chứ,sao lại mũ 3 zậy bn

12 tháng 7 2017

mũ 2 và mũ 3 nha bạn. cả 2 cái cách làm tương tự nhau.nếu bạn ko làm đc mũ 3, bn có thể làm mũ 2 chi mình xem đc ko

5 tháng 10 2018

cm sao bạn 

5 tháng 10 2018

=<3/4

20 tháng 3 2019

sử dụng bdt bunhiacopxki có đc ko bn

21 tháng 3 2019

\(a^2\sqrt{a}+b^2\sqrt{b}+c^2\sqrt{c}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(=\left(a^2\sqrt{a}+\frac{1}{\sqrt{a}}\right)+\left(b^2\sqrt{b}+\frac{1}{\sqrt{b}}\right)+\left(c^2\sqrt{c}+\frac{1}{\sqrt{c}}\right)\)

\(\ge2a+2b+2c\ge6\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=6\)

26 tháng 9 2016

Ta có \(\frac{b+c+6}{1+a}=\frac{11-a}{1+a}=-1+\frac{12}{1+a}\)

\(\frac{c+a+4}{2+b}=-1+\frac{12}{2+b}\)

\(\frac{a+b+3}{3+c}=-1+\frac{12}{3+c}\)

Mà \(\frac{1}{1+a}+\frac{1}{2+b}+\frac{1}{3+c}\ge\)

\(\frac{3^2}{1+2+3+a+b+c}=\frac{3}{4}\)

Từ đó => VT \(\ge\)-3 + \(12\frac{3}{4}\)= 6

15 tháng 5 2020

Đặt x=a+1; y=b+2; z=3+c (x;y;z>0)

\(VT=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

\(=\frac{y}{x}+\frac{x}{y}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\)

\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}=6\)

Dấu "=" xảy ra <=> a=3; b=2; c=1

15 tháng 10 2017

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

15 tháng 10 2017

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

5 tháng 12 2017

giúp mình cái nhé

5 tháng 12 2017

a=34;

23 tháng 6 2017

\(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

...... bạn làm 2 TH rồi thế vào P nhé, chỗ phân tích ko hiểu thì cứ hỏi lại mình

5 tháng 8 2020

Bài làm:

Ta có: \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\)

\(=\frac{3}{b+c}+\frac{a^2}{b+c}+\frac{3}{c+a}+\frac{b^2}{c+a}+\frac{3}{a+b}+\frac{c^2}{a+b}\)

\(=3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\)

Áp dụng bất đẳng thức Cauchy Schwars ta được:

\(VT\ge3.\frac{\left(1+1+1\right)^2}{a+b+b+c+c+a}+\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\)

\(=3.\frac{9}{2\left(a+b+c\right)}+\frac{3^2}{2\left(a+b+c\right)}\)

\(=3.\frac{9}{2.3}+\frac{9}{2.3}=\frac{9}{2}+\frac{9}{6}=6\)

Dấu "=" xảy ra khi: \(a=b=c=1\)